MTHSC 412 SECTION 3.3 – ISOMORPHISMS AND HOMOMORPHISMS

Kevin James

EXAMPLE

Consider the set $S = \{0, 2, 4, 6, 8\} \subseteq \mathbb{Z}_{10}$. Its addition and multiplication tables are below.

+	0	2	4	6	8
0	0	2	4	6	8
2	2	4	6	8	0
4	4	6	8	0	2
6	6	8	0	2	4
8	8	0	2	4	6

×	0	2	4	6	8
0	0	0	0	0	0
2	0	4	8	2	6
4	0	8	6	4	2
6	0	2	4	6	8
8	0	6	2	8	4

Note

- **1** S is a subring of \mathbb{Z}_{10} . It is commutative and has an identity.
- 2 In fact, S is even a field.
- 8 Have you seen this field before?
- **4** It "looks like" \mathbb{Z}_5 .

FACT

We can define a map $\phi: S \to \mathbb{Z}_5$ by $\phi(x) = [x]_5$. This map has the inverse map $\psi: \mathbb{Z}_5 \to S$ given by $\psi(y) = [6y]_{10}$.

Note

- \bullet is 1-1 and onto.
- 2 So, we can think of ϕ as a relabeling of the members of S provided that this relabeling preserves our addition and multiplication tables.
- **3** $\phi(a+b) = \phi(a) + \phi(b)$.

DEFINITION

Suppose that R and S are rings. We say that a map $\phi: R \to S$ is an isomorphism of rings if the following hold.

- **1** ϕ is bijective (-i.e. 1-1 and onto).
- **2** $\phi(a+b) = \phi(a) + \phi(b)$.
- **3** $\phi(ab) = \phi(a)\phi(b)$.

In the case that there is an isomorphism $\phi: R \to S$, we say that R and S are isomorphic and write $R \cong S$.

EXAMPLE

Show that complex conjugation is a ring isomorphism from $\ensuremath{\mathbb{C}}$ to itself.

DEFINITION

Suppose that R and S are rings. We say that a map $\phi: R \to S$ is a ring homomorphism if the following hold.

- **1** $\phi(a+b) = \phi(a) + \phi(b)$.
- $\phi(ab) = \phi(a)\phi(b).$

EXAMPLE

Define $f: \mathbb{Z} \to \mathbb{Z}_5$ by f(x) = [x]. Show that f is a homomorphism of rings.

THEOREM

Suppose that $f: R \to S$ is a ring homomorphism. Then,

- $\mathbf{0} f(0_R) = 0_S.$
- 2 f(-a) = -f(a).
- 3 f(a-b) = f(a) f(b).
- ① If R is a ring with identity and f is surjective then S is a ring with identity and $f(1_R) = 1_S$.
- **6** If R, S and f are as above and $u \in R$ is a unit then f(u) is a unit also and $f(u)^{-1} = f(u^{-1})$.

DEFINITION

Suppose that $f:R \to S$ is a function. We define the $\operatorname{\underline{image}}$ of f as

$$\mathsf{im}(f) = \{f(r) : r \in R\}.$$

Note

A function $f: R \to S$ is surjective (onto) if and only if im(f) = S.

COROLLARY

Suppose that $f: R \to S$ is a ring homomorphism. Then im(f) is a subring of S.

EXAMPLE

Are there isomorphisms from \mathbb{Z}_{15} to $\mathbb{Z}_5 \times \mathbb{Z}_3$? Can you characterize all such maps?

EXAMPLE

Show that there are no isomorphisms from R to S when R and S are chosen below.

- $\mathbf{0}$ $R = \mathbb{Z}$ and $S = \mathbb{Z}_6$.
- 2 $R = \mathbb{Z}_6$ and $S = \mathbb{Z}$.
- **3** $R = \mathbb{Z}_9$ and $S = \mathbb{Z}_3 \times \mathbb{Z}_3$.

FACT

Suppose that $R \cong S$. If R is commutative then so is S.

