MTHSC 412 Section 4.1 – Polynomial Arithmetic and the Division Algorithm

Kevin James

Kevin James MTHSC 412 Section 4.1 – Polynomial Arithmetic and the Div

-∢ ≣ ▶

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

$$R[x] = \left\{ \sum_{n \ge 0} a_n x^n \mid \text{for all } n, a_n \in R \text{ and for all but} \\ \text{finitely many } n, a_n = 0 \right\}$$

・日・ ・ ヨ・ ・ ヨ・

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

1
$$R[x] = \left\{ \sum_{n \ge 0} a_n x^n \mid \text{for all } n, a_n \in R \text{ and for all but} \\ \text{finitely many } n, a_n = 0 \right\}.$$

2 $\left(\sum_{n \ge 0} a_n x^n \right) = \left(\sum_{n \ge 0} b_n x^n \right)$ if and only if $a_n = b_n$ for all n .

・回 と く ヨ と く ヨ と

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

$$\mathbf{R}[x] = \left\{ \sum_{n \ge 0} a_n x^n \mid \text{for all } n, a_n \in R \text{ and for all but} \\ \text{finitely many } n, a_n = 0 \right\}.$$

$$\mathbf{Q} \left(\sum_{n \ge 0} a_n x^n \right) = \left(\sum_{n \ge 0} b_n x^n \right) \text{ if and only if } a_n = b_n \text{ for all } n.$$

$$\mathbf{Q} \left(\sum_{n \ge 0} a_n x^n \right) + \left(\sum_{n \ge 0} b_n x^n \right) = \sum_{n \ge 0} (a_n \oplus b_n) x^n.$$

< □ > < □ > < □ > □ □

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

1
$$R[x] = \left\{ \sum_{n\geq 0} a_n x^n \mid \text{for all } n, a_n \in R \text{ and for all but} \\ \text{finitely many } n, a_n = 0 \right\}.$$

2 $\left(\sum_{n\geq 0} a_n x^n \right) = \left(\sum_{n\geq 0} b_n x^n \right) \text{ if and only if } a_n = b_n \text{ for all } n.$
3 $\left(\sum_{n\geq 0} a_n x^n \right) + \left(\sum_{n\geq 0} b_n x^n \right) = \sum_{n\geq 0} (a_n \oplus b_n) x^n.$
4 $\left(\sum_{n\geq 0} a_n x^n \right) \cdot \left(\sum_{n\geq 0} b_n x^n \right) = \sum_{n\geq 0} \left(\sum_{j=0}^n a_j \otimes b_{n-j} \right) x^n$

<回> < 回> < 回> < 回>

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

1
$$R[x] = \left\{ \sum_{n\geq 0} a_n x^n \mid \text{for all } n, a_n \in R \text{ and for all but} \\ \text{finitely many } n, a_n = 0 \right\}.$$

2 $\left(\sum_{n\geq 0} a_n x^n \right) = \left(\sum_{n\geq 0} b_n x^n \right)$ if and only if $a_n = b_n$ for all n .
3 $\left(\sum_{n\geq 0} a_n x^n \right) + \left(\sum_{n\geq 0} b_n x^n \right) = \sum_{n\geq 0} (a_n \oplus b_n) x^n$.
4 $\left(\sum_{n\geq 0} a_n x^n \right) \cdot \left(\sum_{n\geq 0} b_n x^n \right) = \sum_{n\geq 0} \left(\sum_{j=0}^n a_j \otimes b_{n-j} \right) x^n$

EXERCISE

Prove that R[x] is a ring if R is.

< □ > < 급 > < ≧ > < ≧ > ○ Q (
 MTHSC 412 Section 4.1 – Polynomial Arithmetic and the Div

Note

- **1** We can think of $R \subset R[x]$.
- **2** R[x] is commutative if and only if R is.
- **3** If R has an identity 1_R then R[x] also has an identity, namely $1_{R[x]} = 1_R \cdot x^0$ (which we usually write as 1).

(本部)) (本語)) (本語)) (語)

Suppose that
$$f(x) = \sum_{n \ge 0} a_n x^n \in R[x]$$
 and take

$$m=\max\{n\geq 0\mid a_n\neq 0\}.$$

Then we say that a_m is the leading coefficient of f and that the degree of f is m and we write deg(f) = m.

(4回) (三) (三) (三)

Definition

Suppose that
$$f(x) = \sum_{n \ge 0} a_n x^n \in R[x]$$
 and take

$$m=\max\{n\geq 0\mid a_n\neq 0\}.$$

Then we say that a_m is the leading coefficient of f and that the degree of f is m and we write deg(f) = m.

Note

The degree of 0 is undefined.
 If f = ∑_{n≥0} f_nxⁿ ∈ R[x] and deg(f) = d, then we may write f = ∑^d_{n=0} f_nxⁿ.

(本間) (本語) (本語) (語)

Definition

Suppose that
$$f(x) = \sum_{n \ge 0} a_n x^n \in R[x]$$
 and take

$$m=\max\{n\geq 0\mid a_n\neq 0\}.$$

Then we say that a_m is the leading coefficient of f and that the degree of f is m and we write deg(f) = m.

Note

The degree of 0 is undefined.

2 If $f = \sum_{n \ge 0} f_n x^n \in R[x]$ and $\deg(f) = d$, then we may write $f = \sum_{n=0}^{d} f_n x^n$.

Theorem

If R is an integral domain and $0_R \neq f, g \in R[x]$, then

$$\deg(fg) = \deg(f) + \deg(g).$$

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへの

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g.

・ロン ・回 と ・ 回 と ・ 回 と

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n \ge 0} \left(\sum_{j=0}^n f_j g_{n-j} \right) x^n$.

イロン イヨン イヨン イヨン

ъ

Suppose that *R* is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of *f* and *g*. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^n f_j g_{n-j}\right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$).

イロト イヨト イヨト

э

Suppose that *R* is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of *f* and *g*. Then $fg = \sum_{n \ge 0} \left(\sum_{j=0}^n f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$). So, $f_j g_{n-j} = 0$ for all $n > d_f + d_g$.

イロト イポト イヨト イヨト

э

Suppose that *R* is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of *f* and *g*. Then $fg = \sum_{n \ge 0} \left(\sum_{j=0}^n f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$). So, $f_j g_{n-j} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^n f_j g_{n-j}\right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$). So, $f_j g_{n-j} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow$

イロト イポト イヨト イヨト

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^n f_j g_{n-j}\right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$). So, $f_j g_{n-j} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow$

イロト イポト イヨト イヨト

Suppose that *R* is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of *f* and *g*. Then $fg = \sum_{n \ge 0} \left(\sum_{j=0}^n f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$). So, $f_j g_{n-j} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f + d_g}$ is $\sum_{k=0}^{d_f + d_g} f_k g_{d_f + d_g - k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow$

イロト イポト イヨト イヨト

Suppose that *R* is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of *f* and *g*. Then $fg = \sum_{n \ge 0} \left(\sum_{j=0}^n f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n-j) > d_g$ (otherwise $n = j + (n-j) \le d_f + d_g$). So, $f_j g_{n-j} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f+d_g-k} = 0$.

イロト イポト イヨト イヨト

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^{n} f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n - j) > d_g$ (otherwise $n = i + (n - i) < d_f + d_\sigma$). So, $f_i g_{n-i} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f + d_g - k} = 0.$ Also, $k > d_f \Rightarrow f_{k} = 0$.

イロト イポト イヨト イヨト

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^{n} f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n - j) > d_g$ (otherwise $n = i + (n - i) < d_f + d_\sigma$). So, $f_i g_{n-i} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f + d_g - k} = 0.$ Also, $k > d_f \Rightarrow f_{\ell} = 0$. Thus, $f_k g_{d_f+d_{\sigma}-k} = 0$ except possibly when $k = d_f$.

イロト イポト イヨト イヨト

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^{n} f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n - j) > d_g$ (otherwise $n = i + (n - i) < d_f + d_\sigma$). So, $f_i g_{n-i} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f + d_g - k} = 0.$ Also, $k > d_f \Rightarrow f_{\ell} = 0$. Thus, $f_k g_{d_f+d_g-k} = 0$ except possibly when $k = d_f$. So, the coefficient of $x^{d_f+d_g}$ is $f_{d_f}g_{d_g}$.

イロト イポト イヨト イヨト

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^{n} f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n - j) > d_g$ (otherwise $n = i + (n - i) < d_f + d_\sigma$). So, $f_i g_{n-i} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f + d_g - k} = 0.$ Also, $k > d_f \Rightarrow f_{\ell} = 0$. Thus, $f_k g_{d_f+d_{\sigma}-k} = 0$ except possibly when $k = d_f$. So, the coefficient of $x^{d_f+d_g}$ is $f_{d_f}g_{d_g}$. Since, R is an integral domain and since $f_{d_f} \neq 0$ and $g_{d_r} \neq 0$, it follows that $f_{d_f}g_{d_g} \neq 0$.

イロト イヨト イヨト イヨト

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$. Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g. Then $fg = \sum_{n\geq 0} \left(\sum_{j=0}^{n} f_j g_{n-j} \right) x^n$. First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n - j) > d_g$ (otherwise $n = i + (n - i) < d_f + d_\sigma$). So, $f_i g_{n-i} = 0$ for all $n > d_f + d_g$. Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f + d_g - k} = 0.$ Also, $k > d_f \Rightarrow f_{\ell} = 0$. Thus, $f_k g_{d_f+d_{\sigma}-k} = 0$ except possibly when $k = d_f$. So, the coefficient of $x^{d_f+d_g}$ is $f_{d_f}g_{d_g}$. Since, R is an integral domain and since $f_{d_f} \neq 0$ and $g_{d_r} \neq 0$, it follows that $f_{d_f}g_{d_{\sigma}} \neq 0$. Thus $\deg(fg) = d_f + d_g$.

イロト イヨト イヨト イヨト

COROLLARY

If R is an integral domain, then so is R[x].

< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

COROLLARY

If R is an integral domain, then so is R[x].

Proof.

Suppose that $f \neq 0$ and $g \neq 0$ are elements in R[x]. Then f and g have some nonzero coefficients. Following the argument of the last proof, we see that fg will also have a nonzero coefficient (namely the coefficient of $x^{d_f+d_g}$), and is thus nonzero. So, R[x] is an integral domain.

(本間) (本語) (本語) (語)

Note

By a the first part of the proof of our theorem, we have seen that if R is any ring and if $f, g \in R[x]$ are nonzero, then $\deg(fg) \leq \deg(f) + \deg(g)$.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Note

By a the first part of the proof of our theorem, we have seen that if R is any ring and if $f, g \in R[x]$ are nonzero, then $\deg(fg) \leq \deg(f) + \deg(g)$.

EXAMPLE

In $\mathbb{Z}_6[x]$ we have,

$$(3x+1)(2x+1) = 5x+1.$$

· < @ > < 글 > < 글 > · · 글

THE DIVISION ALGORITHM FOR F[x]

THEOREM

Let F be a field and $f, g \in F[x]$ with $g \neq 0$. Then there exist polynomials $q, r \in F[x]$ satisfying the following.

$$f = gq + r.$$

2 Either
$$r = 0$$
 or $\deg(r) < \deg(g)$.

・日・ ・ ヨ ・ ・ ヨ ・ ・