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Definition

Suppose that (R,⊕,⊗) is a ring then we define the ring R[x ] of
polynomials in the variable x with coefficients in R as follows.

1 R[x ] =

{∑
n≥0 anxn

∣∣∣∣ for all n, an ∈ R and for all but
finitely many n, an = 0

}
.

2

(∑
n≥0 anxn

)
=
(∑

n≥0 bnxn
)

if and only if an = bn for all n.

3

(∑
n≥0 anxn

)
+
(∑

n≥0 bnxn
)

=
∑

n≥0(an ⊕ bn)xn.

4

(∑
n≥0 anxn

)
·
(∑

n≥0 bnxn
)

=
∑

n≥0

(∑n
j=0 aj ⊗ bn−j

)
xn

Exercise

Prove that R[x ] is a ring if R is.
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Note

1 We can think of R ⊂ R[x ].

2 R[x ] is commutative if and only if R is.

3 If R has an identity 1R then R[x ] also has an identity, namely
1R[x] = 1R · x0 (which we usually write as 1).
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Definition

Suppose that f (x) =
∑

n≥0 anxn ∈ R[x ] and take

m = max{n ≥ 0 | an 6= 0}.

Then we say that am is the leading coefficient of f and that the
degree of f is m and we write deg(f ) = m.

Note

1 The degree of 0 is undefined.

2 If f =
∑

n≥0 fnxn ∈ R[x ] and deg(f ) = d , then we may write

f =
∑d

n=0 fnxn.

Theorem

If R is an integral domain and 0R 6= f , g ∈ R[x ], then

deg(fg) = deg(f ) + deg(g).
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Proof.

Suppose that R is an integral domain and 0R 6= f , g ∈ R[x ].

Write f =
∑

fnxn and g =
∑

gnxn and let df and dg denote the
degrees of f and g .

Then fg =
∑

n≥0

(∑n
j=0 fjgn−j

)
xn.

First, note that if n > df + dg , either j > df or (n − j) > dg

(otherwise n = j + (n − j) ≤ df + dg ).
So, fjgn−j = 0 for all n > df + dg .

Now, note that the coefficient of xdf +dg is
∑df +dg

k=0 fkgdf +dg−k , and
k < df ⇒ df + dg > k + dg ⇒ df + dg − k > dg ⇒ gdf +dg−k = 0.
Also, k > df ⇒ fk = 0.
Thus, fkgdf +dg−k = 0 except possibly when k = df .
So, the coefficient of xdf +dg is fdf gdg .
Since, R is an integral domain and since fdf 6= 0 and gdg 6= 0, it
follows that fdf gdg 6= 0.
Thus deg(fg) = df + dg .
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Corollary

If R is an integral domain, then so is R[x ].

Proof.

Suppose that f 6= 0 and g 6= 0 are elements in R[x ]. Then f and g
have some nonzero coefficients. Following the argument of the last
proof, we see that fg will also have a nonzero coefficient (namely
the coefficient of xdf +dg ), and is thus nonzero. So, R[x ] is an
integral domain.
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Note

By a the first part of the proof of our theorem, we have seen that
if R is any ring and if f , g ∈ R[x ] are nonzero, then
deg(fg) ≤ deg(f ) + deg(g).

Example

In Z6[x ] we have,

(3x + 1)(2x + 1) = 5x + 1.
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The Division Algorithm for F [x ]

Theorem

Let F be a field and f , g ∈ F [x ] with g 6= 0. Then there exist
polynomials q, r ∈ F [x ] satisfying the following.

1 f = gq + r .

2 Either r = 0 or deg(r) < deg(g).
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