MTHSC 412 Section 4.1 – Polynomial Arithmetic and the Division Algorithm

Kevin James

DEFINITION

Suppose that (R, \oplus, \otimes) is a ring then we define the ring R[x] of polynomials in the variable x with coefficients in R as follows.

EXERCISE

Prove that R[x] is a ring if R is.

Note

- **1** We can think of $R \subset R[x]$.
- \mathbf{Q} R[x] is commutative if and only if R is.
- 3 If R has an identity 1_R then R[x] also has an identity, namely $1_{R[x]} = 1_R \cdot x^0$ (which we usually write as 1).

DEFINITION

Suppose that $f(x) = \sum_{n \geq 0} a_n x^n \in R[x]$ and take

$$m=\max\{n\geq 0\mid a_n\neq 0\}.$$

Then we say that a_m is the <u>leading coefficient</u> of f and that the degree of f is m and we write deg(f) = m.

Note

- 1 The degree of 0 is undefined.
- ② If $f = \sum_{n \geq 0} f_n x^n \in R[x]$ and $\deg(f) = d$, then we may write $f = \sum_{n=0}^d f_n x^n$.

THEOREM

If R is an integral domain and $0_R \neq f, g \in R[x]$, then

$$\deg(fg) = \deg(f) + \deg(g).$$

Proof.

Suppose that R is an integral domain and $0_R \neq f, g \in R[x]$.

Write $f = \sum f_n x^n$ and $g = \sum g_n x^n$ and let d_f and d_g denote the degrees of f and g.

Then
$$fg = \sum_{n\geq 0} \left(\sum_{j=0}^n f_j g_{n-j}\right) x^n$$
.

First, note that if $n > d_f + d_g$, either $j > d_f$ or $(n - j) > d_g$ (otherwise $n = j + (n - j) \le d_f + d_g$).

So,
$$f_j g_{n-j} = 0$$
 for all $n > d_f + d_g$.

Now, note that the coefficient of $x^{d_f+d_g}$ is $\sum_{k=0}^{d_f+d_g} f_k g_{d_f+d_g-k}$, and $k < d_f \Rightarrow d_f + d_g > k + d_g \Rightarrow d_f + d_g - k > d_g \Rightarrow g_{d_f+d_g-k} = 0$.

Also, $k > d_f \Rightarrow f_k = 0$.

Thus, $f_k g_{d_f + d_g - k} = 0$ except possibly when $k = d_f$.

So, the coefficient of $x^{d_f+d_g}$ is $f_{d_f}g_{d_g}$.

Since, R is an integral domain and since $f_{d_f} \neq 0$ and $g_{d_g} \neq 0$, it follows that $f_{d_f}g_{d_\sigma} \neq 0$.

Thus $\deg(fg) = d_f + d_g$.

COROLLARY

If R is an integral domain, then so is R[x].

PROOF.

Suppose that $f \neq 0$ and $g \neq 0$ are elements in R[x]. Then f and g have some nonzero coefficients. Following the argument of the last proof, we see that fg will also have a nonzero coefficient (namely the coefficient of $x^{d_f+d_g}$), and is thus nonzero. So, R[x] is an integral domain.

Note

By a the first part of the proof of our theorem, we have seen that if R is any ring and if $f, g \in R[x]$ are nonzero, then $\deg(fg) \leq \deg(f) + \deg(g)$.

EXAMPLE

In $\mathbb{Z}_6[x]$ we have,

$$(3x+1)(2x+1) = 5x+1.$$

The Division Algorithm for F[x]

THEOREM

Let F be a field and $f, g \in F[x]$ with $g \neq 0$. Then there exist polynomials $q, r \in F[x]$ satisfying the following.

- **1** f = gq + r.
- 2 Either r = 0 or deg(r) < deg(g).