MTHSC 412 Section 4.3 – IRREDUCIBLES AND UNIQUE FACTORIZATION IN F[x]

Kevin James

Kevin James MTHSC 412 Section 4.3 – Irreducibles and Unique Factorization

個 と く ヨ と く ヨ と …

Let R be an integral domain. Then $f \in R[x]$ is a unit in R[x] if and only f is a constant polynomial that is a unit in R.

▲祠 → ▲ 臣 → ▲ 臣 →

Let R be an integral domain. Then $f \in R[x]$ is a unit in R[x] if and only f is a constant polynomial that is a unit in R.

COROLLARY

Let F be a field. Then f is a unit in F[x] if and only if f is a nonzero constant polynomial (-i.e. if and only if deg(f) = 0).

・ロン ・回と ・ヨン・

Let R be an integral domain. Then $f \in R[x]$ is a unit in R[x] if and only f is a constant polynomial that is a unit in R.

COROLLARY

Let F be a field. Then f is a unit in F[x] if and only if f is a nonzero constant polynomial (-i.e. if and only if deg(f) = 0).

DEFINITION

An element r in a commutative ring R with identity is said to be an <u>associate</u> of an element $b \in R$ if there is a unit $u \in R$ such that a = bu.

Let R be an integral domain. Then $f \in R[x]$ is a unit in R[x] if and only f is a constant polynomial that is a unit in R.

COROLLARY

Let F be a field. Then f is a unit in F[x] if and only if f is a nonzero constant polynomial (-i.e. if and only if deg(f) = 0).

DEFINITION

An element r in a commutative ring R with identity is said to be an <u>associate</u> of an element $b \in R$ if there is a unit $u \in R$ such that a = bu.

EXAMPLE

3 and -3 are associates in \mathbb{Z} .

DEFINITION

1 Let F be a field and suppose that $f \in F[x]$. The polynomial f is said to be <u>irreducible</u> if its only divisors are its associates and the nonzero constant polynomials (units of F[x]).

・ 同 ト ・ ヨ ト ・ ヨ ト

DEFINITION

- **1** Let F be a field and suppose that $f \in F[x]$. The polynomial f is said to be <u>irreducible</u> if its only divisors are its associates and the nonzero constant polynomials (units of F[x]).
- A nonconstant polynomial that is not irreducible is said to be <u>reducible</u>.

・ 同 ト ・ ヨ ト ・ ヨ ト …

DEFINITION

- **1** Let F be a field and suppose that $f \in F[x]$. The polynomial f is said to be <u>irreducible</u> if its only divisors are its associates and the nonzero constant polynomials (units of F[x]).
- A nonconstant polynomial that is not irreducible is said to be <u>reducible</u>.

Fact

Every polynomial of degree 1 in F[x] is irreducible.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let F be a field. A polynomial $f \in F[x]$ is reducible if and only if it can be written as a product of two polynomials of lower degree.

Let F be a field. A polynomial $f \in F[x]$ is reducible if and only if it can be written as a product of two polynomials of lower degree.

THEOREM

Suppose that F is a field and that $p \in F[x]$ with deg(p) > 0. Then the following are equivalent.

- 1 p is irreducible.
- 2 If $b, c \in F[x]$ and p|(bc) then either p|b or p|c.
- **3** If $r, s \in F[x]$ are such that p = rs then r or s is a nonzero constant polynomial.

A (1) > (1) > (1)

Let F be a field. A polynomial $f \in F[x]$ is reducible if and only if it can be written as a product of two polynomials of lower degree.

Theorem

Suppose that F is a field and that $p \in F[x]$ with deg(p) > 0. Then the following are equivalent.

- 1 p is irreducible.
- 2 If $b, c \in F[x]$ and p|(bc) then either p|b or p|c.
- **3** If $r, s \in F[x]$ are such that p = rs then r or s is a nonzero constant polynomial.

Corollary

Suppose that F is a field and that $p \in F[x]$ is irreducible. If $p|(a_1 \cdot a_2 \cdot \cdots \cdot a_k)$ then $p|a_i$ for some $1 \le i \le k$.

Let F be a field. Every nonconstant polynomial $f \in F[x]$ can be written as a product of irreducible polynomials of F[x]. This factorization is unique up to rearrangement replacement by associates.

(ロ) (同) (E) (E) (E)

Let F be a field. Every nonconstant polynomial $f \in F[x]$ can be written as a product of irreducible polynomials of F[x]. This factorization is unique up to rearrangement replacement by associates.

COROLLARY

Suppose that F is a field. Every $f \in F[x]$ with $\deg(f) > 0$ can be uniquely written as $f = u \cdot p_1 \cdot p_2 \cdot \cdots \cdot p_k$, where u is a unit of F[x] and the p_i 's are monic irreducibles of F[x].