MTHSC 412 SECTION 4.4 –POLYNOMIAL FUNCTIONS, ROOTS AND REDUCIBILITY

Kevin James

Note

Suppose that R is a commutative ring. To each polynomial $f = \sum f_n x^n \in R[x]$ we can associate a function $f : R \to R$ defined by the rule $f(r) = \sum f_n r^n$.

Note

Suppose that R is a commutative ring. To each polynomial $f = \sum f_n x^n \in R[x]$ we can associate a function $f : R \to R$ defined by the rule $f(r) = \sum f_n r^n$.

Note

Let $f(x) = x^5$ and g(x) = x be polynomials in $\mathbb{Z}_5[x]$. Note that although f and g are different elements in $\mathbb{Z}_5[x]$, they induce the same function from \mathbb{Z}_5 to \mathbb{Z}_5 .

DEFINITION

Let R be a commutative ring and $f \in R[x]$. An element $a \in R$ is said to be a <u>root</u> of f if $f(a) = 0_R$.

DEFINITION

Let R be a commutative ring and $f \in R[x]$. An element $a \in R$ is said to be a <u>root</u> of f if $f(a) = 0_R$.

EXAMPLE

Let $R = \mathbb{Z}_5$ and let $f = x^2 + 1$. Then it is easy to check that 2 and 3 are roots of f.

THEOREM (REMAINDER THEOREM)

Suppose that F is a field and that $f \in F[x]$ and $a \in F$. Then the reminder when f is divided by (x - a) is f(a).

THEOREM (REMAINDER THEOREM)

Suppose that F is a field and that $f \in F[x]$ and $a \in F$. Then the reminder when f is divided by (x - a) is f(a).

THEOREM (FACTOR THEOREM)

Suppose that F is a field and that $f \in F[x]$. Then $a \in F$ is a root of f if and only if (x - a)|f.

Suppose that F is a field and that $f \in F[x]$ has degree n. Then f has at most n roots in F.

Suppose that F is a field and that $f \in F[x]$ has degree n. Then f has at most n roots in F.

COROLLARY

Let F be a field and let $f \in F[x]$ with degree ≥ 2 . If f is irreducible then f has no roots in F.

Suppose that F is a field, $f \in F[x]$ and that $\deg(f) = 2$ or 3. Then f is irreducible if and only if f has no roots in F.

Suppose that F is a field, $f \in F[x]$ and that $\deg(f) = 2$ or 3. Then f is irreducible if and only if f has no roots in F.

EXAMPLE

 $x^2 + x + 1$ is irreducible in \mathbb{Z}_5 .

Suppose that F is a field, $f \in F[x]$ and that $\deg(f) = 2$ or 3. Then f is irreducible if and only if f has no roots in F.

EXAMPLE

 $x^2 + x + 1$ is irreducible in \mathbb{Z}_5 .

COROLLARY

Let F be an infinite field and $f, g \in F[x]$. Then f and g induce the same function from F to F if and only if f = g.