MTHSC 412 Section 5.1 –Congruence in F[x] and Congruence Classes

Kevin James

Kevin James MTHSC 412 Section 5.1 –Congruence in F[x] and Congruence

Suppose that F is a field and that $f, g, p \in F[x]$ with $p \neq 0$. Then we say that f is congruent to g modulo p and write $f \equiv g \pmod{p}$ if p|(f - g).

(김희) (종) (종) 등

Suppose that F is a field and that $f, g, p \in F[x]$ with $p \neq 0$. Then we say that f is congruent to g modulo p and write $f \equiv g \pmod{p}$ if p|(f - g).

EXAMPLE

In
$$\mathbb{Q}[x]$$
, $x^3 + 3x^2 + 4x + 1 \equiv x - 1 \pmod{x^2 + x + 1}$

· < @ > < 문 > < 문 > _ 문

Definition

Suppose that F is a field and that $f, g, p \in F[x]$ with $p \neq 0$. Then we say that f is congruent to g modulo p and write $f \equiv g \pmod{p}$ if p|(f - g).

EXAMPLE

In
$$\mathbb{Q}[x]$$
, $x^3 + 3x^2 + 4x + 1 \equiv x - 1 \pmod{x^2 + x + 1}$

Theorem

Let F be a field and $0 \neq p \in F[x]$. Then congruence modulo p is an equivalence relation on F[x].

(ロ) (同) (E) (E) (E)

Definition

Suppose that F is a field and that $f, g, p \in F[x]$ with $p \neq 0$. Then we say that f is congruent to g modulo p and write $f \equiv g \pmod{p}$ if p|(f - g).

EXAMPLE

In
$$\mathbb{Q}[x]$$
, $x^3 + 3x^2 + 4x + 1 \equiv x - 1 \pmod{x^2 + x + 1}$

Theorem

Let F be a field and $0 \neq p \in F[x]$. Then congruence modulo p is an equivalence relation on F[x].

Theorem

Let F be a field and $0 \neq p \in F[x]$. Suppose that $f \equiv g \pmod{p}$ and $h \equiv k \pmod{p}$. Then

 $f + h \equiv g + k \pmod{p}$ and $fh \equiv gk \pmod{p}$.

Kevin James

MTHSC 412 Section 5.1 –Congruence in F[x] and Congruence

Suppose that F is a field and that $f, p \in F[x]$ with $p \neq 0$. We define the congruence class of f as

$$[f] = \{g \in F[x] \mid f \equiv g \pmod{p}\}.$$

▲圖▶ ★ 国▶ ★ 国▶

æ

Suppose that F is a field and that $f, p \in F[x]$ with $p \neq 0$. We define the congruence class of f as

$$[f] = \{g \in F[x] \mid f \equiv g \pmod{p}\}.$$

Theorem

 $f \equiv g \pmod{p}$ if and only if [f] = [g].

(本間) (本語) (本語) (語)

Suppose that F is a field and that $f, p \in F[x]$ with $p \neq 0$. We define the congruence class of f as

$$[f] = \{g \in F[x] \mid f \equiv g \pmod{p}\}.$$

Theorem

$$f \equiv g \pmod{p}$$
 if and only if $[f] = [g]$.

COROLLARY

Two congruence classes modulo p are either identical or disjoint.

▲圖▶ ▲屋▶ ▲屋▶

2

COROLLARY

Suppose that F is a field and that $0 \neq p \in F[x]$. Let

$$S = \{f \in F[x] : \deg(f) < \deg(p)\} \cup \{0\}.$$

Then, $\cup_{f \in S}[f] = F[x]$ and if $f, g \in S$ then [f] = [g] if and only if f = g.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

COROLLARY

Suppose that F is a field and that $0 \neq p \in F[x]$. Let

$$S = \{f \in F[x] : \deg(f) < \deg(p)\} \cup \{0\}.$$

Then, $\cup_{f \in S}[f] = F[x]$ and if $f, g \in S$ then [f] = [g] if and only if f = g.

EXAMPLE

Consider congruence modulo $x^2 + 1$ in $\mathbb{R}[x]$. What are the congruence classes. Which one is congruent to x^2 ?

・ロン ・回 と ・ ヨ と ・ ヨ と

COROLLARY

Suppose that F is a field and that $0 \neq p \in F[x]$. Let

$$S = \{f \in F[x] : \deg(f) < \deg(p)\} \cup \{0\}.$$

Then, $\cup_{f \in S}[f] = F[x]$ and if $f, g \in S$ then [f] = [g] if and only if f = g.

EXAMPLE

Consider congruence modulo $x^2 + 1$ in $\mathbb{R}[x]$. What are the congruence classes. Which one is congruent to x^2 ?

NOTATION

We denote the set of congruence classes of F[x] modulo p by F[x]/(p).