MTHSC 412 SECTION 5.1 –CONGRUENCE IN F[x] AND CONGRUENCE CLASSES

Kevin James

DEFINITION

Suppose that F is a field and that $f, g, p \in F[x]$ with $p \neq 0$. Then we say that f is congruent to g modulo p and write $f \equiv g \pmod{p}$ if p|(f-g).

EXAMPLE

In
$$\mathbb{Q}[x]$$
, $x^3 + 3x^2 + 4x + 1 \equiv x - 1 \pmod{x^2 + x + 1}$

THEOREM

Let F be a field and $0 \neq p \in F[x]$. Then congruence modulo p is an equivalence relation on F[x].

THEOREM

Let F be a field and $0 \neq p \in F[x]$. Suppose that $f \equiv g \pmod{p}$ and $h \equiv k \pmod{p}$. Then

$$f + h \equiv g + k \pmod{p}$$
 and $fh \equiv gk \pmod{p}$.

DEFINITION

Suppose that F is a field and that $f, p \in F[x]$ with $p \neq 0$. We define the congruence class of f as

$$[f] = \{g \in F[x] \mid f \equiv g \pmod{p}\}.$$

THEOREM

 $f \equiv g \pmod{p}$ if and only if [f] = [g].

COROLLARY

Two congruence classes modulo p are either identical or disjoint.

COROLLARY

Suppose that F is a field and that $0 \neq p \in F[x]$. Let

$$S = \{ f \in F[x] : \deg(f) < \deg(p) \} \cup \{ 0 \}.$$

Then, $\bigcup_{f \in S} [f] = F[x]$ and if $f, g \in S$ then [f] = [g] if and only if f = g.

EXAMPLE

Consider congruence modulo $x^2 + 1$ in $\mathbb{R}[x]$. What are the congruence classes. Which one is congruent to x^2 ?

NOTATION

We denote the set of congruence classes of F[x] modulo p by F[x]/(p).