MTHSC 412 SECTION 5.3 – THE STRUCTURE OF F[x]/(p) WHEN p IS IRREDUCIBLE

Kevin James

THEOREM

Suppose that F is a field and that $p \in F[x]$ with $deg(p) \neq 0$. Then the following are equivalent.

- **1** p is irreducible in F[x].
- 2 F[x]/(p) is a field.
- 3 F[x]/(p) in an integral domain

DEFINITION

Suppose that F is a field and that p is irreducible. We say that F[x]/(p) is an extension field of F, since it is a field and it contains F.

THEOREM

Suppose that F is a field and that p is irreducible. Then F[x]/(p) is an extension field of F which contains a root of p.

COROLLARY

Let F be a field and let $f \in F[x]$ with $\deg(f) > 0$. Then, there is an extension field K of F which contains a root of f.

Note

$$\mathbb{C} = \mathbb{R}[x]/(x^2+1).$$