MTHSC 412 SECTION 6.1 – IDEALS AND CONGRUENCE

Kevin James

Suppose that I is a subring of a ring R. We say that I is an ideal and write $I \subseteq R$ (or $I \triangleleft R$ if $I \neq R$) if whenever $a \in I$ and $r \in R$, $ra, ar \in I$.

Suppose that I is a subring of a ring R. We say that I is an ideal and write $I \subseteq R$ (or $I \subseteq R$ if $I \ne R$) if whenever $a \in I$ and $r \in R$, $ra, ar \in I$.

EXAMPLE

Suppose that I is a subring of a ring R. We say that I is an ideal and write $I \subseteq R$ (or $I \subseteq R$ if $I \ne R$) if whenever $a \in I$ and $r \in R$, $ra, ar \in I$.

- 2 $3\mathbb{Z} \triangleleft \mathbb{Z}$.

Suppose that I is a subring of a ring R. We say that I is an ideal and write $I \subseteq R$ (or $I \triangleleft R$ if $I \ne R$) if whenever $a \in I$ and $r \in R$, $ra, ar \in I$.

- **1** $\{0_R\}$ ≤ R.
- 2 $3\mathbb{Z} \triangleleft \mathbb{Z}$.
- **3** For $f \in F[x]$, put $(f) = \{gf \mid g \in F[x]\}$. Then $(f) \subseteq F[x]$.

Suppose that I is a subring of a ring R. We say that I is an ideal and write $I \subseteq R$ (or $I \triangleleft R$ if $I \neq R$) if whenever $a \in I$ and $r \in R$, $ra, ar \in I$.

- $\mathbf{2}$ $3\mathbb{Z} \triangleleft \mathbb{Z}$.
- **4** Let $S = \left\{ \left(\begin{array}{cc} a & 0 \\ b & 0 \end{array} \right) \mid a,b \in \mathbb{R} \right\}$. Is S and ideal of $\mathbb{M}_2(\mathbb{R})$.

Suppose that R is a ring. Then a nonempty set $A \subseteq R$ is an ideal provided

- **1** if $a, b \in I$ then $a b \in I$.
- 2) if $r \in R$ and $a \in I$ then $ar, ra \in I$.

Suppose that R is a ring. Then a nonempty set $A \subseteq R$ is an ideal provided

- **1** if $a, b \in I$ then $a b \in I$.
- 2) if $r \in R$ and $a \in I$ then $ar, ra \in I$.

THEOREM

Let R be a commutative ring with identity. Suppose that $c \in R$ and let $(c) = \{cr \mid r \in R\}$. Then $(c) \subseteq R$.

Suppose that R is a ring. Then a nonempty set $A \subseteq R$ is an ideal provided

- **1** if $a, b \in I$ then $a b \in I$.
- 2) if $r \in R$ and $a \in I$ then $ar, ra \in I$.

THEOREM

Let R be a commutative ring with identity. Suppose that $c \in R$ and let $(c) = \{cr \mid r \in R\}$. Then $(c) \subseteq R$.

DEFINITION

For R a commutative ring with identity and $c \in R$, (c) is called the principal ideal generated by c.

FACT

Every ideal of \mathbb{Z} is principal.

FACT

Every ideal of \mathbb{Z} is principal.

EXAMPLE

Let $I = \{f \in \mathbb{Z}[x] \mid 3|f(0)\}$. Then, $I \triangleleft \mathbb{Z}[x]$. However, I is not principal.

Suppose that R is a commutative ring with identity and that $c_1, \ldots, c_n \in R$. Then the set $I = \{r_1c_1 + \cdots + r_nc_n \mid r_i \in R\}$. is an ideal of R.

Suppose that R is a commutative ring with identity and that $c_1, \ldots, c_n \in R$. Then the set $I = \{r_1c_1 + \cdots + r_nc_n \mid r_i \in R\}$. is an ideal of R.

DEFINITION

The ideal in the previous theorem is called the ideal generated by c_1, \ldots, c_n and is denoted by (c_1, c_2, \ldots, c_n) .

Suppose that R is a commutative ring with identity and that $c_1, \ldots, c_n \in R$. Then the set $I = \{r_1c_1 + \cdots + r_nc_n \mid r_i \in R\}$. is an ideal of R.

DEFINITION

The ideal in the previous theorem is called the ideal generated by c_1, \ldots, c_n and is denoted by (c_1, c_2, \ldots, c_n) . Such an ideal is said to be finitely generated.

Suppose that R is a commutative ring with identity and that $c_1, \ldots, c_n \in R$. Then the set $I = \{r_1c_1 + \cdots + r_nc_n \mid r_i \in R\}$. is an ideal of R.

DEFINITION

The ideal in the previous theorem is called the ideal generated by c_1, \ldots, c_n and is denoted by (c_1, c_2, \ldots, c_n) . Such an ideal is said to be finitely generated.

EXAMPLE

Consider the ideal $(3, x) \subseteq \mathbb{Z}[x]$.

Congruence

DEFINITION

Suppose that R is a ring that that $I \subseteq R$; $a, b \in R$. We say that a is congruent to b modulo the ideal I and write $a \equiv b \pmod{I}$ if $(a - b) \in I$.

Suppose that R is a ring that that $I \subseteq R$; $a, b \in R$. We say that a is congruent to b modulo the ideal I and write $a \equiv b \pmod{I}$ if $(a - b) \in I$.

EXAMPLE

① Let $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$, and let $I = \{f \in R \mid f(1) = 0. \text{ Then } R \text{ is a commutative ring with identity and } I \leq R. \text{ Let } f(x) = x^2 + 2 \text{ and } g(x) = 2x + 1.$ Then $f \equiv g \pmod{I}$.

Suppose that R is a ring that that $I \subseteq R$; $a, b \in R$. We say that a is congruent to b modulo the ideal I and write $a \equiv b \pmod{I}$ if $(a - b) \in I$.

- **1** Let $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$, and let $I = \{f \in R \mid f(1) = 0. \text{ Then } R \text{ is a commutative ring with identity and } I \subseteq R.$ Let $f(x) = x^2 + 2$ and g(x) = 2x + 1. Then $f \equiv g \pmod{I}$.
- 2 Let $R = \mathbb{Z}$ and I = (3) then $a \equiv b \pmod{3}$ if and only if $a \equiv b \pmod{I}$.

Let R be a ring and let $I \subseteq R$. Then congruence modulo I is an equivalence relation on R.

Let R be a ring and let $I \subseteq R$. Then congruence modulo I is an equivalence relation on R.

THEOREM

Suppose that $I \subseteq R$. If $a \equiv b \pmod{I}$ and $c \equiv d \pmod{I}$ then

$$a + c \equiv b + d \pmod{I}$$
 and $ac \equiv bd \pmod{I}$.

Suppose that $I \subseteq R$.

$$\{b \in R \mid b \equiv a \pmod{I}\} =$$

Suppose that $I \subseteq R$.

$$\{b \in R \mid b \equiv a \pmod{I}\} = \{b \in R \mid (b-a) = i \in I\}$$

Suppose that $I \subseteq R$.

$$\{b \in R \mid b \equiv a \pmod{I}\}\ = \{b \in R \mid (b-a) = i \in I\}\ = \{(a+i) \mid i \in I\}$$

Suppose that $I \subseteq R$.

$$\{b \in R \mid b \equiv a \pmod{I}\}\ = \{b \in R \mid (b-a) = i \in I\}$$

= $\{(a+i) \mid i \in I\}$

Definition

The congruence class of a modulo I is defined as

$$a + I = \{(a + i) \mid i \in I\}.$$

These congruence classes are also called the cosets of *I*.

Suppose that $I \subseteq R$ and $a, c \in R$. Then $a \equiv c \pmod{I}$ if and only if a + I = c + I.

Suppose that $I \subseteq R$ and $a, c \in R$. Then $a \equiv c \pmod{I}$ if and only if a + I = c + I.

COROLLARY

Let $I \subseteq R$ and $a, c \in R$. Then a + I and c + I are either disjoint or identical.

Suppose that $I \subseteq R$ and $a, c \in R$. Then $a \equiv c \pmod{I}$ if and only if a + I = c + I.

COROLLARY

Let $I \subseteq R$ and $a, c \in R$. Then a + I and c + I are either disjoint or identical.

EXAMPLE

① Suppose that $R = \mathbb{Z}$ and I = (4). Then the distinct cosets are 0 + (4) = [0], 1 + (4) = [1], 2 + (4) = [2] and 3 + (4) = [3].

Suppose that $I \subseteq R$ and $a, c \in R$. Then $a \equiv c \pmod{I}$ if and only if a + I = c + I.

COROLLARY

Let $I \subseteq R$ and $a, c \in R$. Then a + I and c + I are either disjoint or identical.

- ① Suppose that $R = \mathbb{Z}$ and I = (4). Then the distinct cosets are 0 + (4) = [0], 1 + (4) = [1], 2 + (4) = [2] and 3 + (4) = [3].
- 2 Suppose that R = Z[x] and I = (3, x) then the distinct cosets are 0 + I, 1 + I and 2 + I.

Suppose that $I \subseteq R$. Then the set of distinct cosets is usually denoted by R/I. That is,

$$R/I = \{r+I \mid r \in R\}.$$