MTHSC 412 Section 6.1 – Ideals and Congruence

Kevin James

Kevin James MTHSC 412 Section 6.1 – Ideals and Congruence

白 ト く ヨ ト く ヨ ト

DEFINITION

Suppose that *I* is a subring of a ring *R*. We say that *I* is an ideal and write $I \leq R$ (or I < R if $I \neq R$) if whenever $a \in I$ and $r \in R$, ra, $ar \in I$.

EXAMPLE

- **2** $3\mathbb{Z} \triangleleft \mathbb{Z}$.

3 For
$$f \in F[x]$$
, put $(f) = \{gf \mid g \in F[x]\}$. Then $(f) \leq F[x]$.
4 Let $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$. Is S and ideal of $\mathbb{M}_2(\mathbb{R})$.

イロン イヨン イヨン イヨン

3

Suppose that R is a ring. Then a nonempty set $A \subseteq R$ is an ideal provided

- **1** if $a, b \in I$ then $a b \in I$.
- 2) if $r \in R$ and $a \in I$ then $ar, ra \in I$.

THEOREM

Let R be a commutative ring with identity. Suppose that $c \in R$ and let $(c) = \{cr \mid r \in R\}$. Then $(c) \leq R$.

Definition

For R a commutative ring with identity and $c \in R$, (c) is called the principal ideal generated by c.

イロト イポト イヨト イヨト

Fact

Every ideal of \mathbb{Z} is principal.

EXAMPLE

Let $I = \{f \in \mathbb{Z}[x] \mid 3|f(0)\}$. Then, $I \triangleleft \mathbb{Z}[x]$. However, I is not principal.

Suppose that R is a commutative ring with identity and that $c_1, \ldots, c_n \in R$. Then the set $I = \{r_1c_1 + \cdots + r_nc_n \mid r_i \in R\}$. is an ideal of R.

DEFINITION

The ideal in the previous theorem is called the ideal generated by c_1, \ldots, c_n and is denoted by (c_1, c_2, \ldots, c_n) . Such an ideal is said to be finitely generated.

EXAMPLE

Consider the ideal $(3, x) \trianglelefteq \mathbb{Z}[x]$.

- 4 同 6 4 日 6 4 日 6

DEFINITION

Suppose that R is a ring that that $I \subseteq R$; $a, b \in R$. We say that a is congruent to b modulo the ideal I and write $a \equiv b \pmod{I}$ if $(a - b) \in I$.

EXAMPLE

1 Let $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$, and let $I = \{f \in R \mid f(1) = 0.$ Then R is a commutative ring with identity and $I \leq R$. Let $f(x) = x^2 + 2$ and g(x) = 2x + 1. Then $f \equiv g \pmod{l}$.

2 Let
$$R = \mathbb{Z}$$
 and $I = (3)$ then $a \equiv b \pmod{3}$ if and only if $a \equiv b \pmod{I}$.

イロン イヨン イヨン イヨン

Let R be a ring and let $I \leq R$. Then congruence modulo I is an equivalence relation on R.

Theorem

Suppose that $I \subseteq R$. If $a \equiv b \pmod{I}$ and $c \equiv d \pmod{I}$ then

 $a + c \equiv b + d \pmod{I}$ and $ac \equiv bd \pmod{I}$.

(4 回) (4 回) (4 回)

Note

Suppose that $I \trianglelefteq R$.

$$\{b \in R \mid b \equiv a \pmod{I}\} = \{b \in R \mid (b-a) = i \in I\} \\ = \{(a+i) \mid i \in I\}$$

DEFINITION

The congruence class of a modulo I is defined as

$$a + I = \{(a + i) \mid i \in I\}.$$

These congruence classes are also called the \underline{cosets} of I.

イロン イヨン イヨン イヨン

э

Suppose that $I \leq R$ and $a, c \in R$. Then $a \equiv c \pmod{I}$ if and only if a + I = c + I.

COROLLARY

Let $I \leq R$ and $a, c \in R$. Then a + I and c + I are either disjoint or identical.

EXAMPLE

- **1** Suppose that $R = \mathbb{Z}$ and I = (4). Then the distinct cosets are 0 + (4) = [0], 1 + (4) = [1], 2 + (4) = [2] and 3 + (4) = [3].
- Suppose that R = Z[x] and I = (3, x) then the distinct cosets are 0 + I, 1 + I and 2 + I.

イロト イポト イヨト イヨト

DEFINITION

Suppose that $I \trianglelefteq R$. Then the set of distinct cosets is usually denoted by R/I. That is,

$$R/I = \{r+I \mid r \in R\}.$$

(ロ) (同) (E) (E) (E)