MTHSC 412 Section 6.2 – Quotient Rings and Homomorphisms

Kevin James

Kevin James MTHSC 412 Section 6.2 – Quotient Rings and Homomorphise

(《圖》 《문》 《문》 - 문

Theorem

Let $I \leq R$. If a + I = b + I and c + I = d + I, then

$$(a+c)+I=(b+d)+I$$
 and $ac+I=bd+I$.

DEFINITION

Suppose that $I \trianglelefteq R$. Then we define addition and multiplication on R/I by

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = ab+I$.

EXAMPLE

Suppose that $R = \mathbb{Z}[x]$ and that $I = (x^2, 2)$. What are the distinct cosets for R/I? Write out addition and multiplication tables for R/I.

Theorem

Suppose that $I \trianglelefteq R$. Then,

- \bigcirc R/I is a ring.
- **2** If R is commutative then R/I is commutative.
- **3** If R has an identity, then R/I has identity $1_R + I$.

・ロン ・回と ・ヨン ・ヨン

DEFINITION

R/I is called the quotient ring or factor ring of R by I.

Kevin James MTHSC 412 Section 6.2 – Quotient Rings and Homomorphism

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DEFINITION

Suppose that $f : R \to S$ is a homomorphism of rings. We define the kernel of f as

$$\ker(f) = \{r \in R : f(r) = 0_S\}.$$

Theorem

Suppose that $f : R \to S$ is a homomorphism of rings. Then $\ker(f) \trianglelefteq R$.

Theorem

Suppose that $f : R \to S$ is a homomorphism of rings. Then $ker(f) = \{0\}$ if and only if f is injective.

・ロト ・日本 ・モート ・モート

Theorem

Suppose that $I \leq R$. Then the map $\pi : R \to R/I$ given by $\pi(r) = r + I$ is a surjective ring homomorphism with kernel I.

Definition

The map π is called the natural homomorphism from R to R/I.

Definition

Suppose that $f : R \to S$ is a homomorphism of rings. Then we say that S is a homomorphic image of R. If f is an isomorphism then we say that S is an isomorphic image of R.

・ロン ・回と ・ヨン ・ヨン

THEOREM (FIRST ISOMORPHISM THEOREM)

Suppose that $f : R \to S$ is a surjective homomorphism of rings with kernel K. Then $R/K \cong S$.

EXAMPLE

Consider the ring $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$. Let $I = \{f \in R \mid f(2) = 0 = f(3)\}$. Describe R/I.

EXAMPLE

Describe all homomorphic images of \mathbb{Z} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの