MTHSC 412 Section 6.3 - Thestructure of R/I when I is prime or maximal

Kevin James

Kevin James MTHSC 412 Section 6.3 – The structure of R/I when I is pri

◆□> ◆□> ◆目> ◆目> ◆目 ● の Q @ >

Suppose that R is a commutative ring and that $P \leq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

(本部) (本語) (本語) (語)

Suppose that R is a commutative ring and that $P \leq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

EXAMPLE

Suppose that R is a commutative ring and that $P \trianglelefteq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

EXAMPLE

(3) is prime in \mathbb{Z} . (6) is not a prime ideal of \mathbb{Z} .

<ロ> (四) (四) (三) (三) (三)

Suppose that R is a commutative ring and that $P \trianglelefteq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

EXAMPLE

- (3) is prime in \mathbb{Z} . (6) is not a prime ideal of \mathbb{Z} .
- (0_R) is a prime ideal if R is an integral domain.

(本間) (本語) (本語) (語)

Suppose that R is a commutative ring and that $P \trianglelefteq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

EXAMPLE

- **1** (3) is prime in \mathbb{Z} . (6) is not a prime ideal of \mathbb{Z} .
- (0_R) is a prime ideal if R is an integral domain.
- If F is a field and if p(x) is irreducible in F[x], then (p) is a prime ideal of F[x] (see Thm. 4.11).

▲帰▶ ★ 国▶ ★ 国▶

Suppose that R is a commutative ring and that $P \trianglelefteq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

EXAMPLE

- **(**(3) is prime in \mathbb{Z} . (6) is not a prime ideal of \mathbb{Z} .
- **2** (0_R) is a prime ideal if R is an integral domain.
- If F is a field and if p(x) is irreducible in F[x], then (p) is a prime ideal of F[x] (see Thm. 4.11).
- ④ Let $R = \mathbb{Z}[x]$ and let $I = \{f \in R : 3 | f(0)\}$. Then *I* is not principal. Thus $I \neq R$. *I* is in fact prime.

Suppose that R is a commutative ring and that $P \trianglelefteq R$. P is said to be prime if $P \neq R$ and whenever $bc \in P$, either $b \in P$ or $c \in P$.

EXAMPLE

- **(**(3) is prime in \mathbb{Z} . (6) is not a prime ideal of \mathbb{Z} .
- **2** (0_R) is a prime ideal if R is an integral domain.
- If F is a field and if p(x) is irreducible in F[x], then (p) is a prime ideal of F[x] (see Thm. 4.11).
- ④ Let $R = \mathbb{Z}[x]$ and let $I = \{f \in R : 3 | f(0)\}$. Then *I* is not principal. Thus $I \neq R$. *I* is in fact prime.

6 (x) is a prime ideal of $\mathbb{Z}[x]$.

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. Then $a + P = 0_R + P$ in R/P if and only if $a \in P$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. Then $a + P = 0_R + P$ in R/P if and only if $a \in P$.

Theorem

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. P is prime if and only if R/P is an integral domain.

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. Then $a + P = 0_R + P$ in R/P if and only if $a \in P$.

Theorem

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. P is prime if and only if R/P is an integral domain.

EXAMPLE

$$0 \ \mathbb{Z}/(3) = \mathbb{Z}_3 \text{ is a field.}$$

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. Then $a + P = 0_R + P$ in R/P if and only if $a \in P$.

Theorem

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. P is prime if and only if R/P is an integral domain.

EXAMPLE

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. Then $a + P = 0_R + P$ in R/P if and only if $a \in P$.

THEOREM

Suppose that R is a commutative ring with identity and that $P \trianglelefteq R$. P is prime if and only if R/P is an integral domain.

EXAMPLE

$$1 \ \mathbb{Z}/(3) = \mathbb{Z}_3 \text{ is a field.}$$

2
$$\mathbb{R}[x]/(x^2+1)$$
 is a field

8 $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$ is not a field. What is different here?

Suppose that $M \subseteq R$. *M* is said to be <u>maximal</u> in *R* if $M \neq R$ and whenever $M \subseteq J \subseteq R$ then either J = M or J = R.

Suppose that $M \subseteq R$. *M* is said to be <u>maximal</u> in *R* if $M \neq R$ and whenever $M \subseteq J \subseteq R$ then either J = M or J = R.

EXAMPLE

- **1** (5) is maximal in \mathbb{Z} .
- **2** $x^2 + 1$ is maximal in $\mathbb{R}[x]$.

Suppose that $M \subseteq R$. *M* is said to be <u>maximal</u> in *R* if $M \neq R$ and whenever $M \subseteq J \subseteq R$ then either J = M or J = R.

EXAMPLE

- **1** (5) is maximal in \mathbb{Z} .
- $\mathbf{O} x^2 + 1$ is maximal in $\mathbb{R}[x]$.

Theorem

Suppose that R is a commutative ring with identity and that $M \leq R$. Then M is maximal in R if and only if R/M is a field.

Suppose that $M \subseteq R$. *M* is said to be <u>maximal</u> in *R* if $M \neq R$ and whenever $M \subseteq J \subseteq R$ then either J = M or J = R.

EXAMPLE

- **1** (5) is maximal in \mathbb{Z} .
- $\mathbf{O} x^2 + 1$ is maximal in $\mathbb{R}[x]$.

Theorem

Suppose that R is a commutative ring with identity and that $M \leq R$. Then M is maximal in R if and only if R/M is a field.

COROLLARY

In a commutative ring with identity every maximal ideal is prime.

・ロット (日本) (日本) (日本)