MTHSC 412 Section 7.1 – Definitions and Examples of Groups

Kevin James

Kevin James MTHSC 412 Section 7.1 – Definitions and Examples of Group

同 ト く ヨ ト く ヨ ト

DEFINITION

A permutation of a set T is a bijection $f : T \to T$.

NOTATION

Suppose that $T = \{1, 2, 3\}$ and that $f : T \to T$ is defined by f(1) = 3, f(2) = 1 and f(3) = 2. We denote f by $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$. Suppose that g is the map denoted by $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Compute $f \circ g$.

イロト イポト イラト イラト 一日

Definition

We denote the set of all permutations from $\{1, 2, ..., n\}$ as S_n .

Fact

1 If $f, g \in S_n$ then $f \circ g \in S_n$. 2 $(f \circ g) \circ h = f \circ (g \circ h)$ for all $f, g, h \in S_3$. **3** The identity permutation $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$ is an identity with respect to the binary operation \circ . **4** Every bijection $f \in S_n$ has an inverse with respect to \circ . In fact the inverse of $\begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ is $\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ 1 & 2 & \dots & n \end{pmatrix}$, where we would probably rearrange the columns of the last matrix.

・ロン ・回と ・ヨン ・ヨン

Definition

A group is a nonempty set G along with a binary operation * which satisfies the following axioms.

Closure If $a, b \in G$ then $a * b \in G$. Associativity If $a, b, c \in G$ then (a * b) * c = a * (b * c). Identity Element There is an element $e \in G$ such that a * e = e * a = a for all $a \in G$. Inverses For each $a \in G$ there is an element $b \in G$ called the inverse of a which satisfies a * b = b * a = e. A group is called <u>abelian</u> if it also satisfies the following axiom

Commutativity For all $a, b \in G$, a * b = b * a.

・ 同 ト ・ ヨ ト ・ ヨ ト

DEFINITION

- A group is said to have <u>finite order</u> if it has a finite number of elements. In this case, the number of elements of G is denoted |G| and is called the <u>order</u> of G.
- A group with infinitely many elements is said to be of infinite order.

回 と く ヨ と く ヨ と

Example

- **1** S_n is a group under composition of functions.
- ${f 2}$ ${\Bbb Z}$ is an abelian group under addition.
- **3** \mathbb{Z}_n is an abelian group under addition.
- (4) $\mathbb{Q} \{0\}$ is an abelian group under multiplication.
- If S is any set (even an infinite one) then the set of permutations of S is a group under composition of functions.
- 6 Symmetry groups

Definition

The group of rigid motions of a regular *n*-gon is called the Dihedral group of degree n and is denoted by D_n .

▲圖▶ ▲屋▶ ▲屋▶

Theorem

Every ring is an abelian group under addition.

Theorem

If R is a ring with identity, then the set R^* of units of R is a group under multiplication.

COROLLARY

The nonzero elements of a field form an abelian group under multiplication.

| 4 回 2 4 U = 2 4 U =

Example

1 Let U_n denote the set of units in \mathbb{Z}_n . Write out the multiplication table for U_9 .

2 $\mathbb{GL}_n(\mathbb{R}) = \{A \in \mathbb{M}_n(\mathbb{R}) : A \text{ is invertible}\}.$

Theorem

Let (G, *) and (H, \circ) be groups. Then $G \times H$ is a group with operation defined by $(g_1, h_1)(g_2, h_2) = (g_1 * g_2, h_1 \circ h_2)$. If G and H are abelian then so is $G \times H$. If G and H are finite then so is $G \times H$ and $|G \times H| = |G||H|$.

(ロ) (同) (E) (E) (E)