MTHSC 412 Section 7.2 – Basic Properties of Groups

Kevin James

Kevin James MTHSC 412 Section 7.2 – Basic Properties of Groups

御 と く ヨ と く ヨ と …

3

NOTATION

We will typically represent the group operation as multiplication with identity e. However, in some cases, we will use additive notation and denote the identity by 0.

Theorem

Let G be a group and let $a, b, c \in G$. Then,

- 1 G has a unique identity element.
- 2) $ab = ac \Rightarrow b = c$ and $ba = ca \Rightarrow b = c$.
- **8** Each element of G has a unique inverse.

COROLLARY

If G is a group and $a, b \in G$, then (ab)⁻¹ = $b^{-1}a^{-1}$. (a^{-1})⁻¹ = a.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

DEFINITION

Let G be a group with binary operation written as multiplication. For any $a \in G$ we define *nonnegative integral exponents* by

$$a^0 = e,$$
 $a^1 = a,$ $a^{n+1} = a^n a$ $n > 0.$

Negative integral exponents are defined by

$$a^{-n} = (a^{-1})^n \qquad n > 0.$$

Definition

Let G be a group with binary operation written as addition. For any $a \in G$ we define *nonnegative integral multiples* by

$$0a = 0,$$
 $1a = a,$ $(n+1)a = na+1$ $n > 0.$

Negative integral multiples are defined by

$$(-n)a = n(-a)$$
 $n > 0.$

THEOREM (LAWS OF EXPONENTS)

Suppose that G is a group with binary operation denoted by multiplication and that $a, b \in G$, and $m, n \in \mathbb{Z}$. Then,

1
$$x^{n} \cdot x^{-n} = e$$
,
2 $x^{m} \cdot x^{n} = x^{m+n}$,
3 $(x^{m})^{n} = x^{mn}$, and
4 If G is abelian then $(xy)^{n} = x^{n}y^{n}$

THEOREM (LAWS OF MULTIPLES)

Suppose that G is a group with binary operation denoted by addition and that $a, b \in G$, and $m, n \in \mathbb{Z}$. Then,

1
$$nx + (-n)x = 0$$
,

- 2) mx + nx = (m + n)x,
- (mx) = (nm)x, and
- 4 If G is abelian then n(x + y) = nx + ny.

Definition

Suppose that G is a group. An element $a \in G$ is said to have <u>finite order</u> if $a^k = e$ for some $k \in \mathbb{N}$. (If we are using additive notation then $a \in G$ has finite order if ka = 0 for some $k \in \mathbb{N}$.) In this case the <u>order</u> of the element a denoted by |a| is the smallest positive integer k such that $a^k = e$. If there is no such positive integer then a is said to be of infinite order.

Example

Theorem

Let G be a group and let $a \in G$.

1 If a has infinite order, then the elements a^k , with $k \in \mathbb{Z}$ are distinct.

2 If
$$a^i = a^j$$
 with $i \neq j$, then a has finite order.

COROLLARY

Let G be an abelian group in which every element has finite order. If $c \in G$ has maximal order, then the order of every element of G divides |c|.

• 3 > 1

æ