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Notation

We will typically represent the group operation as multiplication
with identity e. However, in some cases, we will use additive
notation and denote the identity by 0.

Theorem

Let G be a group and let a, b, c ∈ G . Then,

1 G has a unique identity element.

2 ab = ac ⇒ b = c and ba = ca⇒ b = c.

3 Each element of G has a unique inverse.

Corollary

If G is a group and a, b ∈ G , then

1 (ab)−1 = b−1a−1.

2 (a−1)−1 = a.
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Definition

Let G be a group with binary operation written as multiplication.
For any a ∈ G we define nonnegative integral exponents by

a0 = e, a1 = a, an+1 = ana n > 0.

Negative integral exponents are defined by

a−n = (a−1)n n > 0.

Definition

Let G be a group with binary operation written as addition. For
any a ∈ G we define nonnegative integral multiples by

0a = 0, 1a = a, (n + 1)a = na + 1 n > 0.

Negative integral multiples are defined by

(−n)a = n(−a) n > 0.
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Theorem (Laws of Exponents)

Suppose that G is a group with binary operation denoted by
multiplication and that a, b ∈ G , and m, n ∈ Z. Then,

1 xn · x−n = e,

2 xm · xn = xm+n,

3 (xm)n = xmn, and

4 If G is abelian then (xy)n = xnyn.

Theorem (Laws of Multiples)

Suppose that G is a group with binary operation denoted by
addition and that a, b ∈ G , and m, n ∈ Z. Then,

1 nx + (−n)x = 0,

2 mx + nx = (m + n)x,

3 n(mx) = (nm)x, and

4 If G is abelian then n(x + y) = nx + ny.
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Definition

Suppose that G is a group. An element a ∈ G is said to have
finite order if ak = e for some k ∈ N.
(If we are using additive notation then a ∈ G has finite order if
ka = 0 for some k ∈ N.)
In this case the order of the element a denoted by |a| is the
smallest positive integer k such that ak = e.
If there is no such positive integer then a is said to be of
infinite order.

Example

1 2 has infinite order in Z.

2

(
1 1
0 1

)
has infinite order in GL2(Z).

3 The permutation represented by

(
1 2 3
3 1 2

)
has order 3.

4 7 has order 2 in U8 = (Z/8Z)∗.
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Theorem

Let G be a group and let a ∈ G .

1 If a has infinite order, then the elements ak , with k ∈ Z are
distinct.

2 If ai = aj with i 6= j , then a has finite order.

3 If |a| = n, then

1 ak = e if and only if n|k.
2 ai = aj if and only if i ≡ j (mod n).

4 If |a| = n and n = td then |at | = d = n
t .

5 If |a| = n and k ∈ Z, then |ak | = |a(n,k)| = n
(n,k) .

Corollary

Let G be an abelian group in which every element has finite order.
If c ∈ G has maximal order, then the order of every element of G
divides |c |.
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