MTHSC 412 Section 7.3 – Subgroups

Kevin James

A subset H of a group G is a <u>subgroup</u> of G if H is a group under the group operation of G. If H is a subgroup of G, we will write $H \leq G$.

A subset H of a group G is a <u>subgroup</u> of G if H is a group under the group operation of G. If H is a subgroup of G, we will write $H \leq G$.

EXAMPLE

1 If G is a group with identity e, then $\{e\} \leq G$.

A subset H of a group G is a <u>subgroup</u> of G if H is a group under the group operation of G. If H is a subgroup of G, we will write $H \leq G$.

EXAMPLE

- **1** If G is a group with identity e, then $\{e\} \leq G$.
- 2 If G is a group then $G \leq G$.

A subset H of a group G is a <u>subgroup</u> of G if H is a group under the group operation of G. If H is a subgroup of G, we will write $H \leq G$.

EXAMPLE

- **1** If G is a group with identity e, then $\{e\} \leq G$.
- 2 If G is a group then $G \leq G$.
- **3** \mathbb{Q}^* is a group under multiplication. Let $H = \{r \in \mathbb{Q} \mid r > 0 | Then, <math>H \leq \mathbb{Q}^*$.

A nonempty subset H of a group G is a subgroup of G if

- **1** For all $a, b \in H$, $ab \in H$.
- **2** For all $a \in H$, $a^{-1} \in H$.

A nonempty subset H of a group G is a subgroup of G if

- **1** For all $a, b \in H$, $ab \in H$.
- **2** For all $a \in H$, $a^{-1} \in H$.

DEFINITION

If R is a commutative ring with identity, then we define $\mathbb{SL}_n(R)=\{A\in\mathbb{M}_n(R)\mid \det(A)=1_R\}$

A nonempty subset H of a group G is a subgroup of G if

- **1** For all $a, b \in H$, $ab \in H$.
- **2** For all $a \in H$, $a^{-1} \in H$.

DEFINITION

If R is a commutative ring with identity, then we define $\mathbb{SL}_n(R)=\{A\in\mathbb{M}_n(R)\mid \det(A)=1_R\}$

FACT

Show that $SL_2(\mathbb{R}) \leq GL_2(\mathbb{R})$.

Let H be a nonempty finite subset of a group G. If H is closed under the group operation of G, then $H \leq G$.

Let H be a nonempty finite subset of a group G. If H is closed under the group operation of G, then $H \leq G$.

EXAMPLE

Consider the set

$$H = \left\{ \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

in $\mathbb{G}L_2(\mathbb{R})$. Show that $H \leq \mathbb{G}L_2(\mathbb{R})$.

If G is a group we define the center Z(G) as follows.

$$Z(G) = \{g \in G \mid ag = ga \text{ for all } a \in G\}.$$

If G is a group we define the center Z(G) as follows.

$$Z(G) = \{g \in G \mid ag = ga \text{ for all } a \in G\}.$$

EXAMPLE

- **2** $Z(S_3) = \{e\}.$
- 3 $Z(D_4) = \{e = r^0, r^2\}.$

If G is a group we define the center Z(G) as follows.

$$Z(G) = \{g \in G \mid ag = ga \text{ for all } a \in G\}.$$

EXAMPLE

- **2** $Z(S_3) = \{e\}.$
- 3 $Z(D_4) = \{e = r^0, r^2\}.$

THEOREM

If G is a group then $Z(G) \leq G$.

DEFINITION

If G is a group and $a \in G$, then $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Definition

If G is a group and $a \in G$, then $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

THEOREM

If G is a group and $a \in G$, then $< a > \le G$.

DEFINITION

If G is a group and $a \in G$, then $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

THEOREM

If G is a group and $a \in G$, then $< a > \le G$.

DEFINITION

If G is a group and $a \in G$, < a > is called the <u>cyclic subroup</u> of G generated by a.

DEFINITION

If G is a group and $a \in G$, then $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

THEOREM

If G is a group and $a \in G$, then $< a > \le G$.

Definition

If G is a group and $a \in G$, < a > is called the <u>cyclic subroup</u> of G generated by a.

If $G = \langle a \rangle$, then we say that G is cyclic.

EXAMPLE

In S_3 ,

$$\left\langle \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \right\rangle = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \right\}$$

EXAMPLE

In S_3 ,

$$\left\langle \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \right\rangle = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \right\}$$

Note

If we are using additive notation, then we write $\langle a \rangle = \{ na \mid n \in \mathbb{Z} \}.$

EXAMPLE

In S_3 ,

$$\left\langle \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \right\rangle = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \right\}$$

Note

If we are using additive notation, then we write $\langle a \rangle = \{ na \mid n \in \mathbb{Z} \}.$

EXAMPLE

 $\mathbb{Z}=<1>$.

Suppose that G is a group and that $a \in G$.

- **1** If a has infinite order then < a > is an infinite subgroup of G consisting of the distinct elements a^k with $k \in \mathbb{Z}$.
- 2 If |a| = n, then $\langle a \rangle = \{a^0 = e, a^1, \dots, a^{n-1}\}$.

Suppose that G is a group and that $a \in G$.

- **1** If a has infinite order then < a > is an infinite subgroup of G consisting of the distinct elements a^k with $k \in \mathbb{Z}$.
- 2 If |a| = n, then $\langle a \rangle = \{a^0 = e, a^1, \dots, a^{n-1}\}$.

THEOREM

If F is a field, $G \leq F^*$ and G is finite, then G is cyclic.

Suppose that G is a group and that $a \in G$.

- **1** If a has infinite order then < a > is an infinite subgroup of G consisting of the distinct elements a^k with $k \in \mathbb{Z}$.
- 2 If |a| = n, then $\langle a \rangle = \{a^0 = e, a^1, \dots, a^{n-1}\}$.

THEOREM

If F is a field, $G \leq F^*$ and G is finite, then G is cyclic.

THEOREM

Every subgroup of a cyclic group is cyclic.

Generators of a Group

THEOREM

Let S be a nonempty subset of a group G. Let < S > denote the set

$$\{s_1 \cdot s_2 \cdot \ldots \cdot s_k \mid k \in \mathbb{N}; \text{ for each } 1 \leq i \leq k, s_i \in S \text{ or } s_i^{-1} \in S \}.$$

Then,

- 2) If $S \subseteq H \leq G$, then $\langle S \rangle \leq H$.

Generators of a Group

THEOREM

Let S be a nonempty subset of a group G. Let < S > denote the set

$$\{s_1 \cdot s_2 \cdot \ldots \cdot s_k \mid k \in \mathbb{N}; \text{ for each } 1 \leq i \leq k, s_i \in S \text{ or } s_i^{-1} \in S \}.$$

Then,

- **2** If $S \subseteq H \leq G$, then $\langle S \rangle \leq H$.

EXAMPLE

$$U_{12} = < \{5,7\} >$$
.

