MTHSC 412 SECTION 7.4 – ISOMORPHISMS AND HOMOMORPHISMS

Kevin James

Suppose that (G,*) and (H,\circ) are groups. A map $f:G\to H$ is said to be a homomorphism if $f(a*b)=f(a)\circ f(b)$ for all $a,b\in G$.

Suppose that (G,*) and (H,\circ) are groups. A map $f:G\to H$ is said to be a homomorphism if $f(a*b)=f(a)\circ f(b)$ for all $a,b\in G$.

DEFINITION

Suppose that (G,*) and (H,\circ) are groups, and that $f:G\to H$ is a homomorphism. We say that f is an isomorphism if f is a bijection as well.

Suppose that (G,*) and (H,\circ) are groups. A map $f:G\to H$ is said to be a homomorphism if $f(a*b)=f(a)\circ f(b)$ for all $a,b\in G$.

DEFINITION

Suppose that (G,*) and (H,\circ) are groups, and that $f:G\to H$ is a homomorphism. We say that f is an <u>isomorphism</u> if f is a bijection as well.

If an isomorphism exists from G to H or vice versa, then we say that G and H are isomorphic and write $G \cong H$.

Suppose that (G,*) and (H,\circ) are groups. A map $f:G\to H$ is said to be a homomorphism if $f(a*b)=f(a)\circ f(b)$ for all $a,b\in G$.

DEFINITION

Suppose that (G,*) and (H,\circ) are groups, and that $f:G\to H$ is a homomorphism. We say that f is an <u>isomorphism</u> if f is a bijection as well.

If an isomorphism exists from G to H or vice versa, then we say that G and H are isomorphic and write $G \cong H$.

Note

Isomorphism is an equivalence relation.

- 3 If $f: R \to S$ is an isomorphism of rings, then f is also an isomorphism from the group (R, +) to the group (S, +).

- $(\mathbb{R}_{\geq 0},+) \cong (\mathbb{R}^*,\cdot).$
- 3 If $f: R \to S$ is an isomorphism of rings, then f is also an isomorphism from the group (R, +) to the group (S, +).
- ② Define $f: \mathbb{Z} \to 3\mathbb{Z}$ by f(z) = 3z. Then, f is a group isomorphism. However there is no ring isomorphism between these rings.

- 3 If $f: R \to S$ is an isomorphism of rings, then f is also an isomorphism from the group (R, +) to the group (S, +).
- ① Define $f: \mathbb{Z} \to 3\mathbb{Z}$ by f(z) = 3z. Then, f is a group isomorphism. However there is no ring isomorphism between these rings.
- **6** $S_3 \not\cong \mathbb{Z}_6$.

- 3 If $f: R \to S$ is an isomorphism of rings, then f is also an isomorphism from the group (R, +) to the group (S, +).
- ② Define $f: \mathbb{Z} \to 3\mathbb{Z}$ by f(z) = 3z. Then, f is a group isomorphism. However there is no ring isomorphism between these rings.
- **6** $S_3 \not\cong \mathbb{Z}_6$.
- **6** Suppose that G is a group and $c \in G$. The map $f: G \to G$ given by $f(g) = c^{-1}gc$ is an <u>automorphism</u> of G called the inner automorphism of G induced by c.

THEOREM

Every infinite cyclic group is isomorphic to \mathbb{Z} .

THEOREM

Every infinite cyclic group is isomorphic to \mathbb{Z} .

Every finite cyclic group of size n is isomorphic to \mathbb{Z}_n .

THEOREM

Every infinite cyclic group is isomorphic to \mathbb{Z} .

Every finite cyclic group of size n is isomorphic to \mathbb{Z}_n .

THEOREM

Suppose that G and H are groups with identity elements e_G and e_H respectively. Suppose also that $f:G\to H$ is a homomorphism. Then,

- **1** $f(e_G) = e_H$.
- 2 For all $a \in G$, $f(a^{-1}) = f(a)^{-1}$.
- $(f) \leq H.$
- **4** If f is injective, then $G \cong Im(f)$.

THEOREM (CAYLEY)

Every group G is isomorphic to a group of permutations.

THEOREM (CAYLEY)

Every group G is isomorphic to a group of permutations.

COROLLARY

Every finite group G of order n is isomorphic to a subgroup of S_n .