MTHSC 412 Section 7.5 – Congruence and Lagrange's Theorem

Kevin James

Kevin James MTHSC 412 Section 7.5 – Congruence and Lagrange's Theorem

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Suppose that G is a group and that $K \leq G$. For $a, b \in G$, we say that a and b are congruent modulo K if $ab^{-1} \in K$. In this case, we write $a \equiv b \pmod{K}$.

▲□→ ▲ 国 → ▲ 国 →

Suppose that G is a group and that $K \leq G$. For $a, b \in G$, we say that a and b are congruent modulo K if $ab^{-1} \in K$. In this case, we write $a \equiv b \pmod{K}$.

EXAMPLE

Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternian group and let $K = \{\pm 1, \pm j\}.$

(ロ) (同) (E) (E) (E)

Suppose that G is a group and that $K \leq G$. For $a, b \in G$, we say that a and b are congruent modulo K if $ab^{-1} \in K$. In this case, we write $a \equiv b \pmod{K}$.

EXAMPLE

Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternian group and let $K = \{\pm 1, \pm j\}$. Then $[1] = \{\pm 1, \pm j\}$.

(本間) (本語) (本語) (語)

Suppose that G is a group and that $K \leq G$. For $a, b \in G$, we say that a and b are congruent modulo K if $ab^{-1} \in K$. In this case, we write $a \equiv b \pmod{K}$.

EXAMPLE

Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternian group and let $K = \{\pm 1, \pm j\}.$ Then $[1] = \{\pm 1, \pm j\}.$ $[k] = \{\pm k, \pm i\}.$

(本間) (本語) (本語) (語)

Suppose that G is a group and that $K \leq G$. For $a, b \in G$, we say that a and b are congruent modulo K if $ab^{-1} \in K$. In this case, we write $a \equiv b \pmod{K}$.

EXAMPLE

Let
$$Q = \{\pm 1, \pm i, \pm j, \pm k\}$$
 be the quaternian group and let
 $K = \{\pm 1, \pm j\}.$
Then $[1] = \{\pm 1, \pm j\}.$
 $[k] = \{\pm k, \pm i\}.$

Theorem

Suppose that $K \leq G$. Then the relation $\equiv \pmod{K}$ is an equivalence relation on G.

・ロン ・回と ・ヨン ・ヨン

If $K \leq G$ then the congruence class of $a \in G$ is

Kevin James MTHSC 412 Section 7.5 – Congruence and Lagrange's Theorem

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} =$

◆□> ◆□> ◆目> ◆目> ◆日 ● の Q @ >

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} =$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} = \{ka \mid k \in K\} =$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} = \{ka \mid k \in K\} = Ka.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} = \{ka \mid k \in K\} = Ka.$

DEFINITION

The set $Ka = \{ka \mid k \in K\}$ is called a right coset of K in G.

(日) (四) (王) (王) (王)

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} = \{ka \mid k \in K\} = Ka.$

DEFINITION

The set $Ka = \{ka \mid k \in K\}$ is called a right coset of K in G.

Theorem

Suppose that $K \leq G$ and that $a, c \in G$. Then $a \equiv c \pmod{K}$ if and only if Ka = Kc.

・ロン ・回 と ・ 回 と ・ 回 と

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} = \{ka \mid k \in K\} = Ka.$

DEFINITION

The set $Ka = \{ka \mid k \in K\}$ is called a right coset of K in G.

Theorem

Suppose that $K \leq G$ and that $a, c \in G$. Then $a \equiv c \pmod{K}$ if and only if Ka = Kc.

COROLLARY

Let $K \leq G$. Then two right cosets of K are either disjoint or identical.

・ロン ・回と ・ヨン ・ヨン

THEOREM

Let $K \leq G$. Then,

$$G = \cup_{a \in G} Ka.$$

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

Theorem

Let $K \leq G$. Then,

$$\bullet G = \cup_{a \in G} Ka.$$

2 The map $f : K \to Ka$ defined by f(x) = xa is a bijection.

Theorem

Let $K \leq G$. Then,

$$\bullet G = \cup_{a \in G} Ka.$$

Provide the second state of the

Theorem

Let $K \leq G$. Then,

$$\bullet G = \cup_{a \in G} Ka.$$

2 The map f : K → Ka defined by f(x) = xa is a bijection. Thus, if K is finite of size m, then each coset of K has size m also.

DEFINITION

If $H \leq G$ then the number of right cosets of H is G is called the index of H in G and is denoted [G : H].

(ロ) (同) (E) (E) (E)

THEOREM (LAGRANGE)

Suppose that G is a finite group and that $K \leq G$. Then, |G| = |K|[G : K].

(日) (四) (王) (王) (王)

THEOREM (LAGRANGE)

Suppose that G is a finite group and that $K \leq G$. Then, |G| = |K|[G : K].

COROLLARY

Let G be a finite group.

1 For all
$$a \in G$$
, $|a|$ divides $|G|$.

2) If
$$|G| = k$$
, then $a^k = e$ for all $a \in G$.

・ロン ・回 と ・ ヨ と ・ ヨ と

CLASSIFICATION OF FINITE GROUPS

Theorem

Let $p \in \mathbb{Z}$ be a positive prime. Any group G of order p is cyclic and therefore isomorphic to \mathbb{Z}_p .

・ 同 ト ・ ヨ ト ・ ヨ ト

CLASSIFICATION OF FINITE GROUPS

Theorem

Let $p \in \mathbb{Z}$ be a positive prime. Any group G of order p is cyclic and therefore isomorphic to \mathbb{Z}_p .

Theorem

Every group of order 4 is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

CLASSIFICATION OF FINITE GROUPS

Theorem

Let $p \in \mathbb{Z}$ be a positive prime. Any group G of order p is cyclic and therefore isomorphic to \mathbb{Z}_p .

Theorem

Every group of order 4 is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem

Every group of order 6 is isomorphic to \mathbb{Z}_6 or to S_3 .