MTHSC 412 SECTION 7.5 – CONGRUENCE AND LAGRANGE'S THEOREM

Kevin James

DEFINITION

Suppose that G is a group and that $K \leq G$. For $a, b \in G$, we say that a and b are congruent modulo K if $ab^{-1} \in K$. In this case, we write $a \equiv b \pmod{K}$.

EXAMPLE

Let $Q=\{\pm 1,\pm i,\pm j,\pm k\}$ be the quaternian group and let $\mathcal{K}=\{\pm 1,\pm j\}.$

Then $[1] = \{\pm 1, \pm j\}.$

 $[k] = \{\pm k, \pm i\}.$

THEOREM

Suppose that $K \leq G$. Then the relation $\equiv \pmod{K}$ is an equivalence relation on G.

Note

If $K \leq G$ then the congruence class of $a \in G$ is $[a] = \{b \in G \mid ba^{-1} = k \in K\} = \{b \in G \mid b = ka\} = \{ka \mid k \in K\} = Ka$.

DEFINITION

The set $Ka = \{ka \mid k \in K\}$ is called a right coset of K in G.

THEOREM

Suppose that $K \leq G$ and that $a, c \in G$. Then $a \equiv c \pmod{K}$ if and only if Ka = Kc.

COROLLARY

Let $K \leq G$. Then two right cosets of K are either disjoint or identical.

THEOREM

Let $K \leq G$. Then,

- 2 The map $f: K \to K$ a defined by f(x) = xa is a bijection. Thus, if K is finite of size m, then each coset of K has size m also.

DEFINITION

If $H \leq G$ then the number of right cosets of H is G is called the index of H in G and is denoted [G:H].

THEOREM (LAGRANGE)

Suppose that G is a finite group and that $K \leq G$. Then, |G| = |K|[G:K].

COROLLARY

Let G be a finite group.

- **1** For all $a \in G$, |a| divides |G|.
- 2) If |G| = k, then $a^k = e$ for all $a \in G$.

CLASSIFICATION OF FINITE GROUPS

THEOREM

Let $p \in \mathbb{Z}$ be a positive prime. Any group G of order p is cyclic and therefore isomorphic to \mathbb{Z}_p .

THEOREM

Every group of order 4 is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

THEOREM

Every group of order 6 is isomorphic to \mathbb{Z}_6 or to S_3 .