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We would like to build up to the notion of a quotient group. That
is, given K < G we would like to derive an operation on the right
cosets of K from the group operation on G.
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GOAL

We would like to build up to the notion of a quotient group. That
is, given K < G we would like to derive an operation on the right
cosets of K from the group operation on G.

PROBLEM

In order for such an operation to be well-defined, we need that if
a=b (mod K) and ¢ = d (mod K) then ac = bd (mod K).
However, this is not always true.
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EXAMPLE

1 2 3
TakeG—53andK—{e,<2 1 3>}
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EXAMPLE

1 2 3
TakeG—53andK—{e,<2 1 3>}

Then the right cosets (or equivalence classes) of K in G are
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EXAMPLE

1 2 3
Take G = S3 and K = {e,<2 1 3>

Then the right cosets (or equivalence classes) of K in G are

(312)Ga)piasi) (52
11)=(111)
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So, we have

N W
= W

1
3
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EXAMPLE

1 2 3
Take G = S3 and K = {e,<2 1 3>

Then the right cosets (or equivalence classes) of K in G are
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EXAMPLE

1 2 3
Take G = S3 and K = {e,<2 1 3>

Then the right cosets (or equivalence classes) of K in G are

(312)Ga)piasi) (52
11)=(111)

mod K).

(
3 (123 y
2 ) ¢= {312 )°
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So, we have

N W
= W
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However, ( :1))
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EXAMPLE

1 2 3
Take G = S3 and K = {e,<2 1 3>

Then the right cosets (or equivalence classes) of K in G are

(312)Ga)piasi) (52
(- ) o 1

123) (1
3 21 2
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EXAMPLE

1 2 3
Take G = S3 and K = {e,<2 1 3>

Then the right cosets (or equivalence classes) of K in G are

K{<123)<123>}{<123)<123>
’ 31 2)/)°’\3 21 2 1 1 3 2

<;ig)z(é >mod ), and
e:<123
~—\2 1 3
However(1
"\ 3

123
3 21

are in different cosets
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So, we have g
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One major difference between the situation in rings and the
situation in groups is the following.
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One major difference between the situation in rings and the
situation in groups is the following.
Inaring (a—b) el < (b—a)el, because (b—a) = —(a—b).
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One major difference between the situation in rings and the
situation in groups is the following.

Inaring (a—b) el < (b—a)el, because (b—a) = —(a—b).
In fact, in a ring we have (b—a) = —(a—b) = —a—+b.
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One major difference between the situation in rings and the
situation in groups is the following.

Inaring (a—b) el < (b—a)el, because (b—a) = —(a—b).
In fact, in a ring we have (b—a) = —(a—b) = —a—+b.

Thus (a—b) el & —a+bel.
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One major difference between the situation in rings and the
situation in groups is the following.

Inaring (a—b) el < (b—a)el, because (b—a) = —(a—b).
In fact, in a ring we have (b—a) = —(a—b) = —a—+b.

Thus (a—b) el & —a+bel.

However in a group the analogous statements would be ab™! € K
or a~1b € K and these are not always equivalent!
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NOTE

One major difference between the situation in rings and the
situation in groups is the following.

Inaring (a—b) el < (b—a)el, because (b—a) = —(a—b).
In fact, in a ring we have (b—a) = —(a—b) = —a—+b.

Thus (a—b) el & —a+bel.

However in a group the analogous statements would be ab™! € K
or a~1b € K and these are not always equivalent!

| \

DEFINITION

Let K < G and let a,b € G. We say that a is
left congruent to b modulo K and write a ~ b (mod K) if
albeK.
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THEOREM

Let K < G and let a,c € G.

@ The relation of left congruence modulo K is an equivalence
relation on G.
Note: If K < G and a € G then the left equivalence class of
ais aK.

® a~ c (mod K) if and only if aK = cK.

® Any two left cosets of K are either disjoint or identical.
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THEOREM

Let K < G and let a,c € G.

@ The relation of left congruence modulo K is an equivalence
relation on G.
Note: If K < G and a € G then the left equivalence class of
ais aK.

® a~ c (mod K) if and only if aK = cK.

® Any two left cosets of K are either disjoint or identical.

DEFINITION

| \

Suppose that N < G. N is said to be a normal subgroup of G if
alN = Na for every a € G. In this case, we write N < G.
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EXAMPLE

@ If G is abelian and N < G then N is normal.
® Take G = S3 and Kz{e,( L 29 )} Then K is not a

2 1 3
normal subgroup

eTakeG:53andK:<<; § i)> Then K < G.

Kevin James MTHSC 412 Section 7.6 —Normal Subgroups



Suppose that N < G and a, b,c,d € G with a= b (mod N) and
c=d (mod N). Then ac = bd (mod N).
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THEOREM

Suppose that N <4 G and a, b,c,d € G with a= b (mod N) and
c=d (mod N). Then ac = bd (mod N).

| \

THEOREM

Suppose that N < G. The following conditions are equivalent.
o NJIG.
® aNaC N forallae G.
® aNa 1 C N forallae G.
® a'Na=N forallacG.
® aNal=NforallaeG.
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