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Goal

We would like to build up to the notion of a quotient group. That
is, given K ≤ G we would like to derive an operation on the right
cosets of K from the group operation on G .

Problem

In order for such an operation to be well-defined, we need that if
a ≡ b (mod K ) and c ≡ d (mod K ) then ac ≡ bd (mod K ).
However, this is not always true.
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Example

Take G = S3 and K =

{
e,

(
1 2 3
2 1 3

)}
.

Then the right cosets (or equivalence classes) of K in G are

K ,

{(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
,

{(
1 2 3
2 3 1

)
,

(
1 2 3
1 3 2

)}
.

So, we have

(
1 2 3
3 1 2

)
≡

(
1 2 3
3 2 1

)
(mod K ), and

e ≡
(

1 2 3
2 1 3

)
(mod K ).

However,

(
1 2 3
3 1 2

)
· e =

(
1 2 3
3 1 2

)
, and(

1 2 3
3 2 1

)
·
(

1 2 3
2 1 3

)
=

(
1 2 3
2 3 1

)
are in different cosets and therefore not equivalent modulo K .
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Note

One major difference between the situation in rings and the
situation in groups is the following.

In a ring (a− b) ∈ I ⇔ (b − a) ∈ I , because (b − a) = −(a− b).
In fact, in a ring we have (b − a) = −(a− b) = −a + b.
Thus (a− b) ∈ I ⇔ −a + b ∈ I .
However in a group the analogous statements would be ab−1 ∈ K
or a−1b ∈ K and these are not always equivalent!

Definition

Let K ≤ G and let a, b ∈ G . We say that a is
left congruent to b modulo K and write a ' b (mod K ) if
a−1b ∈ K .
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Theorem

Let K ≤ G and let a, c ∈ G.

1 The relation of left congruence modulo K is an equivalence
relation on G.
Note: If K ≤ G and a ∈ G then the left equivalence class of
a is aK .

2 a ' c (mod K ) if and only if aK = cK.

3 Any two left cosets of K are either disjoint or identical.

Definition

Suppose that N ≤ G . N is said to be a normal subgroup of G if
aN = Na for every a ∈ G . In this case, we write N E G .
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Example

1 If G is abelian and N ≤ G then N is normal.

2 Take G = S3 and K =

{
e,

(
1 2 3
2 1 3

)}
. Then K is not a

normal subgroup

3 Take G = S3 and K =

〈(
1 2 3
2 3 1

)〉
. Then K E G .
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Theorem

Suppose that N E G and a, b, c , d ∈ G with a ≡ b (mod N) and
c ≡ d (mod N). Then ac ≡ bd (mod N).

Theorem

Suppose that N ≤ G. The following conditions are equivalent.

1 N E G.

2 a−1Na ⊆ N for all a ∈ G.

3 aNa−1 ⊆ N for all a ∈ G.

4 a−1Na = N for all a ∈ G.

5 aNa−1 = N for all a ∈ G.
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