MTHSC 412 SECTION 7.7 –QUOTIENT GROUPS

Kevin James

NOTATION

If $N \subseteq G$, then G/N denotes the set of right cosets of N in G.

That is, $G/N = \{Ng \mid g \in G\}.$

NOTATION

If $N \subseteq G$, then G/N denotes the set of right cosets of N in G. That is, $G/N = \{Ng \mid g \in G\}$.

THEOREM

Suppose that $N \subseteq G$. If Na = Nc and Nb = Nd in G/N then N(ab) = N(cd).

NOTATION

If $N \subseteq G$, then G/N denotes the set of right cosets of N in G. That is, $G/N = \{Ng \mid g \in G\}$.

THEOREM

Suppose that $N \subseteq G$. If Na = Nc and Nb = Nd in G/N then N(ab) = N(cd).

THEOREM

Suppose that $N \subseteq G$. Then,

- **1** G/N is a group under the operation (Na)*(Nb) = N(ab).
- 2 If G is finite then $|G/N| = [G:N] = \frac{|G|}{|N|}$.
- 3 If G is abelian then so is G/N.

If $N \subseteq G$, then the group G/N is called the <u>quotient group</u> or the factor group.

If $N \subseteq G$, then the group G/N is called the <u>quotient group</u> or the factor group.

EXAMPLE

1 Let
$$G = S_3$$
 and let $N = \left\langle \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right) \right\rangle$.

If $N \subseteq G$, then the group G/N is called the <u>quotient group</u> or the factor group.

EXAMPLE

• Let $G = S_3$ and let $N = \left\langle \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\rangle$.

We saw last time that $N \subseteq S_3$. Describe the group S_3/N .

If $N \subseteq G$, then the group G/N is called the <u>quotient group</u> or the factor group.

EXAMPLE

We saw last time that $N \subseteq S_3$. Describe the group S_3/N .

2 Let $G = U_9$ and let N = < 8 >.

If $N \subseteq G$, then the group G/N is called the <u>quotient group</u> or the factor group.

EXAMPLE

- Let $G = S_3$ and let $N = \left\langle \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\rangle$.
 - We saw last time that $N \subseteq S_3$. Describe the group S_3/N .
- 2 Let $G = U_9$ and let N = < 8 >. Since G is abelian $N \le G$. Describe the group G/N.

STRUCTURE OF GROUPS

THEOREM

Suppose that $N \subseteq G$. Then G/N is abelian if and only if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$.

STRUCTURE OF GROUPS

THEOREM

Suppose that $N \subseteq G$. Then G/N is abelian if and only if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$.

THEOREM

If G is a group with G/Z(G) cyclic, then G is abelian.