MTHSC 412 SECTION 7.8 –QUOTIENT GROUPS AND HOMOMORPHISMS

Kevin James

DEFINITION

Let $f: G \rightarrow H$ be a homomorphism of groups. We define the kernel of \underline{f} as

$$\ker(f) = \{g \in G \mid f(g) = e_H\}.$$

THEOREM

Let $f: G \to H$ be a homomorphism of groups. Then $\ker(f) \subseteq G$.

THEOREM

Let $f: G \to H$ be a homomorphism of groups. Then, f is injective if and only if $\ker(f) = \{e_G\}$.

THEOREM

Let $N \subseteq G$. Then the map $\pi : G \to G/N$ given by $\pi(g) = Ng$ is a surjective homomorphism with $\ker(\pi) = N$.

THEOREM (FIRST ISOMORPHISM THEOREM)

Let $f: G \to H$ be a surjective homomorphism of groups. Then $G/\ker(f) \cong H$.