GROUPS

Kevin James

Definition

A binary operation on a nonempty set A is a mapping f form $A \times A$ to A. That is $f \subseteq A \times A \times A$ and f has the property that for each $(a, b) \in A \times A$, there is precisely one $c \in A$ such that $(a, b, c) \in f$.

NOTATION

If f is a binary operation on A and if $(a, b, c) \in f$ then we have already seen the notation f(a, b) = c. For binary operations, it is customary to write instead

$$a f b = c,$$

or perhaps

$$a * b = c$$
.

EXAMPLE

Some binary operations on $\ensuremath{\mathbb{Z}}$ are

Commutativity and Associativity

Definition

Suppose that * is a binary operation of a nonempty set A.

- * is commutative if a * b = b * a for all $a, b \in A$.
- * is associative if (a * b) * c = a * (b * c).

EXAMPLE

- Multiplication and addition give operators on ℤ which are both commutative and associative.
- 2 Subtraction is an operation on ℤ which is neither commutative nor associative.
- B The binary operation on Z given by x * y = 1 + xy is commutative but not associative. For example (1 * 2) * 3 = 3 * 3 = 10 while 1 * (2 * 3) = 1 * (7) = 8.

CLOSURE

Definition

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a * b \in B$ for all $a, b \in B$, then we say that B is closed under *.

EXAMPLE

Consider addition on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

Proof.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Thus a + b = 2x + 2y = 2(x + y) which is even.

Since a and b were arbitrary even integers, it follows that the set of even integers is closed under addition.

IDENTITY ELEMENT

Definition

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

e * x = x = x * e

for all $x \in A$.

EXAMPLE

- **1** is an identity element for multiplication on the integers.
- **2** 0 is an identity element for addition on the integers.
- **3** If * is defined on \mathbb{Z} by x * y = x + y + 1 Then <u>-1</u> is the identity.
- If the operation * defined on Z by x * y = 1 + xy has no identity element.

RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that e is an identity element with respect to *. Suppose that $a \in A$.

- If there exists b ∈ A such that a * b = e then b is called a right inverse of a with respect to *.
- If there exists b ∈ A such that b * a = e then b is called a *left* inverse of a with respect to *.
- If b ∈ A is both a right and left inverse of a with respect to * then we simply say that b is an *inverse* of a and we say that a is *invertible*.

EXAMPLE

- **1** Consider the operation of addition on the integers. For any integer *a*, the inverse of *a* with respect to addition is -a.
- 2 Consider the operation of multiplication on $\mathbb Z$. The invertible elements are $\underline 1$ and $\underline{-1}$.

Fact

Suppose that * is a binary operation on a nonempty set A. If there is an identity element with respect to * then it is unique. In the case that there is an identity element and that * is associative then for each $a \in A$ if there is an inverse of a then it is unique.

A group is a nonempty set G along with a binary operation * which satisfies the following axioms.

Associativity If $a, b, c \in G$ then (a * b) * c = a * (b * c).

Identity Element There is an element $e \in G$ such that

a * e = e * a = a for all $a \in G$.

Inverses For each $a \in G$ there is an element $b \in G$ called the inverse of a which satisfies a * b = b * a = e.

A group is called <u>Abelian</u> if it also satisfies the following axiom *Commutativity* For all $a, b \in G$, a * b = b * a.

- A group is said to have <u>finite order</u> if it has a finite number of elements. In this case, the number of elements of G is denoted |G| and is called the <u>order</u> of G.
- A group with infinitely many elements is said to be of <u>infinite order</u>.

EXAMPLE

- 1 $\mathbb{Z},\mathbb{Q},\mathbb{R}$ are Abelian groups under addition.
- **2** $\mathbb{Z}/n\mathbb{Z}$ is an Abelian group under addition.
- **8** $\mathbb{Q} \{0\}$ is an Abelian group under multiplication.

Theorem

- Every vector space V is an Abelian group under its addition.
- Every ring is an abelian group under the ring addition.
- If *R* is a ring with identity, then the set *R*^{*} of units of *R* is a group under multiplication.
- The nonzero elements of a field form an abelian group under multiplication.

Theorem

Let (G, *) and (H, \circ) be groups. Then $G \times H$ is a group with operation defined by $(g_1, h_1)(g_2, h_2) = (g_1 * g_2, h_1 \circ h_2)$. If G and H are abelian then so is $G \times H$. If G and H are finite then so is $G \times H$ and $|G \times H| = |G||H|$.

PROPOSITION

Suppose that G is a group.

- 1 The identity element is unique.
- **2** Given $a \in G$, the inverse of a is unique.

3
$$(a^{-1})^{-1} = a$$
.

4
$$(ab)^{-1} = b^{-1}a^{-1}$$
.

6 a₁ * a₂ * · · · * a_k is well defined for all k. (Induct on the associative law for G.)

Note

Since the group law is a well-defined function, we have

 $1 \quad u = v \Rightarrow au = av.$

 $2 \ u = v \Rightarrow ub = vb.$

PROPOSITION

Suppose that $a, b \in G$. Then the equations ax = b and ya = b have unique solutions in G. As a consequence, we have the cancellation laws.

1)
$$au = av \Rightarrow u = v$$
.

$$2 \quad ub = vb \Rightarrow u = v.$$

Suppose that G is a group and that $a \in G$. If the elements $e = a^0, a, a^2, \ldots$ are all distinct, then we say that a has infinite order and write $|a| = \infty$. Otherwise, we define the order of a written |a| to be the smallest positive integer k such that $a^k = e$.

EXAMPLE

1 In
$$(\mathbb{Z}, +)$$
, $|1| = \infty$.

2 In
$$((\mathbb{Q} - \{0\}), *)$$
, $|-1| = 2$.

3 In $\mathbb{Z}/n\mathbb{Z}$, all elements have finite order.