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Binary Operations

DEFINITION

A binary operation on a nonempty set A is a mapping f form Ax A
to A. Thatis f C Ax A x A and f has the property that for each
(a, b) € A X A, there is precisely one ¢ € A such that (a, b,c) € f.
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Binary Operations

DEFINITION

A binary operation on a nonempty set A is a mapping f form A x A
to A. Thatis f C Ax A X A and f has the property that for each
(a, b) € A X A, there is precisely one ¢ € A such that (a, b,c) € .

NOTATION

If f is a binary operation on A and if (a, b, c) € f then we have
already seen the notation f(a, b) = c. For binary operations, it is
customary to write instead

af b=c,
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Binary Operations

DEFINITION

A binary operation on a nonempty set A is a mapping f form A x A
to A. Thatis f C Ax A X A and f has the property that for each
(a, b) € A X A, there is precisely one ¢ € A such that (a, b,c) € .

NOTATION

If f is a binary operation on A and if (a, b, c) € f then we have
already seen the notation f(a, b) = c. For binary operations, it is
customary to write instead

af b=c,

or perhaps

axb=c.

v
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Binary Operations

EXAMPLE

Some binary operations on Z are

O Xx*xy=x-+y
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Binary Operations

EXAMPLE

Some binary operations on Z are
O x*xy=x+y
@ xxy=x—y
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Binary Operations

EXAMPLE

Some binary operations on Z are
O x*xy=x+y
@ xxy=x—y
® xxy=xy
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Binary Operations

EXAMPLE

Some binary operations on Z are
O x*xy=x+y
@ xxy=x—y
® xxy=xy
O xxy=x+2y+3
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Binary Operations

EXAMPLE

Some binary operations on Z are
O x*xy=x+y
@ xxy=x—y
® xxy=xy
O xxy=x+2y+3
@ xxy=1+xy
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Binary Operations

COMMUTATIVITY AND ASSOCIATIVITY

Suppose that * is a binary operation of a nonempty set A.
e x is commutative if ax b= bx* a for all a,b € A.
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Binary Operations

COMMUTATIVITY AND ASSOCIATIVITY

Suppose that * is a binary operation of a nonempty set A.
e x is commutative if ax b= bx* a for all a,b € A.

e x is associative if (a* b)*x c = ax (bxc).
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Binary Operations

COMMUTATIVITY AND ASSOCIATIVITY

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

e % is commutative if ax b= bx* a for all a,b € A.

e x is associative if (ax b)xc = ax (bxc).

EXAMPLE

@ Multiplication and addition give operators on Z which are
both commutative and associative.
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Binary Operations

COMMUTATIVITY AND ASSOCIATIVITY

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

e % is commutative if ax b= bx* a for all a,b € A.

e x is associative if (ax b)xc = ax (bxc).

EXAMPLE

@ Multiplication and addition give operators on Z which are
both commutative and associative.

® Subtraction is an operation on Z which is neither
commutative nor associative.
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Binary Operations

COMMUTATIVITY AND ASSOCIATIVITY

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

e % is commutative if ax b= bx* a for all a,b € A.

e x is associative if (ax b)xc = ax (bxc).

EXAMPLE

@ Multiplication and addition give operators on Z which are
both commutative and associative.

® Subtraction is an operation on Z which is neither
commutative nor associative.

® The binary operation on Z given by xxy =1+ xy is
commutative but not associative.
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Binary Operations

COMMUTATIVITY AND ASSOCIATIVITY

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

e % is commutative if ax b= bx* a for all a,b € A.

e x is associative if (ax b)xc = ax (bxc).

EXAMPLE

@ Multiplication and addition give operators on Z which are
both commutative and associative.

® Subtraction is an operation on Z which is neither
commutative nor associative.

® The binary operation on Z given by x x y = 1+ xy is
commutative but not associative. For example
(1%2)*3=3%x3=10while1%(2%3)=1x%(7)=38.
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Binary Operations

CLOSURE

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.

PROOF.

Suppose that a, b € Z are even.
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.

PROOF.

Suppose that a, b € Z are even.
Then there are x, y € Z such that a = 2x and b = 2y.
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.

PROOF.

Suppose that a, b € Z are even.
Then there are x, y € Z such that a = 2x and b = 2y.
Thus a+ b=
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.

PROOF.

Suppose that a, b € Z are even.
Then there are x, y € Z such that a = 2x and b = 2y.
Thus a+ b =2x+2y =
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.

PROOF.

Suppose that a, b € Z are even.
Then there are x, y € Z such that a = 2x and b = 2y.
Thus a+ b =2x+ 2y = 2(x + y) which is even.
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CLOSURE

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
B C A. Ifitis true that ax b € B for all a, b € B, then we say
that B is closed under x.

EXAMPLE

Consider addition on Z . The set of even integers is closed under
addition.

PROOF.

Suppose that a, b € Z are even.

Then there are x, y € Z such that a = 2x and b = 2y.

Thus a+ b =2x+ 2y = 2(x + y) which is even.

Since a and b were arbitrary even integers, it follows that the set
of even integers is closed under addition. O
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IDENTITY ELEMENT

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is
called an identity element with respect to * if

exX=X=Xx*x¢€

for all x € A.
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IDENTITY ELEMENT

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is
called an identity element with respect to * if

exX=X=Xx*x¢€

for all x € A.

EXAMPLE

@ 1 is an identity element for multiplication on the integers.
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IDENTITY ELEMENT

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is
called an identity element with respect to * if

exX=X=Xx*x¢€

for all x € A.

EXAMPLE

@ 1 is an identity element for multiplication on the integers.

® 0 is an identity element for addition on the integers.
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IDENTITY ELEMENT

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is
called an identity element with respect to * if

exX=X=Xx*x¢€

for all x € A.

EXAMPLE

@ 1 is an identity element for multiplication on the integers.

® 0 is an identity element for addition on the integers.

® If x is defined on Z by xxy =x+y + 1 Then s the
identity.
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IDENTITY ELEMENT

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is
called an identity element with respect to * if

exX=X=Xx*x¢€

for all x € A.

EXAMPLE

@ 1 is an identity element for multiplication on the integers.

® 0 is an identity element for addition on the integers.

@® If x is defined on Z by xxy = x+ y + 1 Then —1 is the
identity.
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IDENTITY ELEMENT

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is
called an identity element with respect to * if

ExX=X=X*x¢€

for all x € A.

EXAMPLE

@ 1 is an identity element for multiplication on the integers.

® 0 is an identity element for addition on the integers.

® If x is defined on Z by x xy = x4+ y +1 Then —1 is the
identity.

@ The operation * defined on Z by x x y = 1 4+ xy has no

identity element.
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RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
e is an identity element with respect to *. Suppose that a € A.

e |f there exists b € A such that ax b = e then b is called a
right inverse of a with respect to .
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RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
e is an identity element with respect to *. Suppose that a € A.
o If there exists b € A such that a* b = e then b is called a
right inverse of a with respect to .

e |f there exists b € A such that bx a = e then b is called a left
inverse of a with respect to *.
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RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that
e is an identity element with respect to *. Suppose that a € A.
o If there exists b € A such that a* b = e then b is called a
right inverse of a with respect to .
e If there exists b € A such that b* a = e then b is called a left
inverse of a with respect to *.
e If b€ Ais both a right and left inverse of a with respect to

then we simply say that b is an inverse of a and we say that a
is invertible.
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Binary Operations

@ Consider the operation of addition on the integers. For any
integer a, the inverse of a with respect to addition is —a.
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Binary Operations

@ Consider the operation of addition on the integers. For any
integer a, the inverse of a with respect to addition is —a.

® Consider the operation of multiplication on Z . The invertible
elements are __ and
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Binary Operations

@ Consider the operation of addition on the integers. For any
integer a, the inverse of a with respect to addition is —a.

® Consider the operation of multiplication on Z . The invertible
elements are 1 and -1 .
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Binary Operations

EXAMPLE

@ Consider the operation of addition on the integers. For any
integer a, the inverse of a with respect to addition is —a.

® Consider the operation of multiplication on Z . The invertible
elements are 1 and -1 .

Suppose that * is a binary operation on a nonempty set A. If there
is an identity element with respect to x then it is unique. In the
case that there is an identity element and that = is associative then
for each a € A if there is an inverse of a then it is unique.
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Groups

DEFINITION

A group is a nonempty set G along with a binary operation x
which satisfies the following axioms.

Associativity If a,b,c € G then (ax b)xc = ax*(bx*c).

Identity Element There is an element e € G such that
axe=exa=aforallaeG.

Inverses For each a € G there is an element b € G called the
inverse of a which satisfies ax b= bx*x a = e.
A group is called Abelian if it also satisfies the following axiom
Commutativity For all a,b € G, ax b= bx* a.
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Groups

DEFINITION

e A group is said to have finite order if it has a finite number of
elements. In this case, the number of elements of G is
denoted |G| and is called the order of G.

e A group with infinitely many elements is said to be of
infinite order.
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@ Z,Q,R are Abelian groups under addition.
® Z/nZ is an Abelian group under addition.

® Q — {0} is an Abelian group under multiplication.
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Groups

THEOREM

o Every vector space V is an Abelian group under its addition.

e Every ring is an abelian group under the ring addition.

e If R is a ring with identity, then the set R* of units of R is a
group under multiplication.

e The nonzero elements of a field form an abelian group under
multiplication.
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Let (G,*) and (H, o) be groups. Then G x H is a group with
operation defined by (g1, h1)(g2, h2) = (g1 * g2, h1 o hp). If G and
H are abelian then so is G x H. If G and H are finite then so is
G x H and |G x H| = |G||H|.
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Groups

PROPOSITION

Suppose that G is a group.

@ The identity element is unique.

® Given a € G, the inverse of a is unique.

0 () l=a

® (ab)! =bla7 L.

@ a1 *xap*---xay is well defined for all k. (Induct on the
associative law for G.)
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Since the group law is a well-defined function, we have

@ u=v=au=av.

® u=v= ub=vb.

PROPOSITION

Suppose that a,b € G. Then the equations ax = b and ya= b
have unique solutions in G. As a consequence, we have the
cancellation laws.

@ au=av=u=v.

® ub=vb=u=yv.
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DEFINITION

Suppose that G is a group and that a € G. If the elements
e=a’ a,a%, ... are all distinct, then we say that a has infinite
order and write |a] = co. Otherwise, we define the order of a
written |a| to be the smallest positive integer k such that a% = e.

EXAMPLE

® In (Z,+), |1| = oo.
@ In (Q—-{0}),%). [-1[=2

® In Z/nZ, all elements have finite order.
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