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Definition

Definition

A binary operation on a nonempty set A is a mapping f form A×A
to A. That is f ⊆ A× A× A and f has the property that for each
(a, b) ∈ A× A, there is precisely one c ∈ A such that (a, b, c) ∈ f .

Notation

If f is a binary operation on A and if (a, b, c) ∈ f then we have
already seen the notation f (a, b) = c . For binary operations, it is
customary to write instead

a f b = c ,

or perhaps
a ∗ b = c .
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Example

Some binary operations on Z are

1 x ∗ y = x + y

2 x ∗ y = x − y

3 x ∗ y = xy

4 x ∗ y = x + 2y + 3

5 x ∗ y = 1 + xy
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Commutativity and Associativity

Definition

Suppose that ∗ is a binary operation of a nonempty set A.

• ∗ is commutative if a ∗ b = b ∗ a for all a, b ∈ A.

• ∗ is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c).

Example

1 Multiplication and addition give operators on Z which are
both commutative and associative.

2 Subtraction is an operation on Z which is neither
commutative nor associative.

3 The binary operation on Z given by x ∗ y = 1 + xy is
commutative but not associative. For example
(1 ∗ 2) ∗ 3 = 3 ∗ 3 = 10 while 1 ∗ (2 ∗ 3) = 1 ∗ (7) = 8.
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Closure

Definition

Suppose that ∗ is a binary operation on a nonempty set A and that
B ⊆ A. If it is true that a ∗ b ∈ B for all a, b ∈ B, then we say
that B is closed under ∗.

Example

Consider addition on Z . The set of even integers is closed under
addition.

Proof.

Suppose that a, b ∈ Z are even.
Then there are x , y ∈ Z such that a = 2x and b = 2y .
Thus a + b = 2x + 2y = 2(x + y) which is even.
Since a and b were arbitrary even integers, it follows that the set
of even integers is closed under addition.
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Identity Element

Definition

Let ∗ be a binary operation on a nonempty set A. An element e is
called an identity element with respect to ∗ if

e ∗ x = x = x ∗ e

for all x ∈ A.

Example

1 1 is an identity element for multiplication on the integers.

2 0 is an identity element for addition on the integers.

3 If ∗ is defined on Z by x ∗ y = x + y + 1 Then

−1

is the
identity.

4 The operation ∗ defined on Z by x ∗ y = 1 + xy has no
identity element.
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Right, Left and Two-Sided Inverses

Definition

Suppose that ∗ is a binary operation on a nonempty set A and that
e is an identity element with respect to ∗. Suppose that a ∈ A.

• If there exists b ∈ A such that a ∗ b = e then b is called a
right inverse of a with respect to ∗.

• If there exists b ∈ A such that b ∗ a = e then b is called a left
inverse of a with respect to ∗.

• If b ∈ A is both a right and left inverse of a with respect to ∗
then we simply say that b is an inverse of a and we say that a
is invertible.
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Example

1 Consider the operation of addition on the integers. For any
integer a, the inverse of a with respect to addition is −a.

2 Consider the operation of multiplication on Z . The invertible
elements are

1

and

-1

.

Fact

Suppose that ∗ is a binary operation on a nonempty set A. If there
is an identity element with respect to ∗ then it is unique. In the
case that there is an identity element and that ∗ is associative then
for each a ∈ A if there is an inverse of a then it is unique.
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Definition

A group is a nonempty set G along with a binary operation ∗
which satisfies the following axioms.

Associativity If a, b, c ∈ G then (a ∗ b) ∗ c = a ∗ (b ∗ c).

Identity Element There is an element e ∈ G such that
a ∗ e = e ∗ a = a for all a ∈ G .

Inverses For each a ∈ G there is an element b ∈ G called the
inverse of a which satisfies a ∗ b = b ∗ a = e.

A group is called Abelian if it also satisfies the following axiom

Commutativity For all a, b ∈ G , a ∗ b = b ∗ a.
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• A group is said to have finite order if it has a finite number of
elements. In this case, the number of elements of G is
denoted |G | and is called the order of G .

• A group with infinitely many elements is said to be of
infinite order.
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Example

1 Z,Q,R are Abelian groups under addition.

2 Z/nZ is an Abelian group under addition.

3 Q− {0} is an Abelian group under multiplication.
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Theorem

• Every vector space V is an Abelian group under its addition.

• Every ring is an abelian group under the ring addition.

• If R is a ring with identity, then the set R∗ of units of R is a
group under multiplication.

• The nonzero elements of a field form an abelian group under
multiplication.
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Theorem

Let (G , ∗) and (H, ◦) be groups. Then G × H is a group with
operation defined by (g1, h1)(g2, h2) = (g1 ∗ g2, h1 ◦ h2). If G and
H are abelian then so is G × H. If G and H are finite then so is
G × H and |G × H| = |G ||H|.
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Proposition

Suppose that G is a group.

1 The identity element is unique.

2 Given a ∈ G, the inverse of a is unique.

3 (a−1)−1 = a.

4 (ab)−1 = b−1a−1.

5 a1 ∗ a2 ∗ · · · ∗ ak is well defined for all k. (Induct on the
associative law for G.)
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Note

Since the group law is a well-defined function, we have

1 u = v ⇒ au = av .

2 u = v ⇒ ub = vb.

Proposition

Suppose that a, b ∈ G. Then the equations ax = b and ya = b
have unique solutions in G. As a consequence, we have the
cancellation laws.

1 au = av ⇒ u = v.

2 ub = vb ⇒ u = v.
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Definition

Suppose that G is a group and that a ∈ G . If the elements
e = a0, a, a2, . . . are all distinct, then we say that a has infinite
order and write |a| =∞. Otherwise, we define the order of a
written |a| to be the smallest positive integer k such that ak = e.

Example

1 In (Z,+), |1| =∞.

2 In ((Q− {0}), ∗), | − 1| = 2.

3 In Z/nZ, all elements have finite order.
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