EXAMPLES OF GROUPS

Kevin James

DEFINITION

The Dihedral group D_{2n} is the set of rigid motions on the regular *n*-gon. That is, D_{2n} is the the set of adjacency preserving bijections from the *n*-gon to itself.

Fact

 D_{2n} is a group under composition of functions and $|D_{2n}| = 2n$.

Definition

- Define *r* to be the map that rotates the *n*-gon clockwise by $\frac{2\pi}{n}$ radians.
- Define *s* to be the map that reflects the *n*-gon across the diagonal passing through the vertex labelled 1.

Fact

- 1 The maps $1 = r^0, r, r^2, ..., r^{n-1}$ are distinct and $r^n = 1$. Thus |r| = n
- **2** |s| = 2.
- The maps s, sr, sr²,..., srⁿ⁻¹ are distinct from each other and distinct from the maps r^k.

4
$$D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}.$$

5 $rs = sr^{-1}(=sr^{n-1}).$
6 $r^k s = sr^{-k}.$

Note

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1; rs = sr^{-1} \rangle$$
.

Remark

In general if G is a group and all elements of G can be written as words in the elements of some set S, and if all relations among $S \cup \{1\}$ may be derived from the relations in a set \mathcal{R} then we write

$$G = \langle S \mid \mathcal{R} \rangle$$
.

Such an expression is called a presentation of G.

DEFINITION

Let Ω denote any non-empty set, then we define S_{Ω} to be the set of bijections on Ω . If $\Omega = \{1, 2, ..., n\}$, then we denote S_{Ω} simply as S_n .

Fact

For any non-empty set Ω , S_{Ω} is a group under composition of functions.

We have convenient notation for working in S_n .

DEFINITION

We denote by (a_1, \ldots, a_k) the map that sends a_i to a_{i+1} for $1 \le i \le (n-1)$ and a_n to a_1 and leaves all other elements fixed. This map is called a k-cycle.

Fact

- 1 Disjoint cycles commute.
- 2 Each element σ ∈ S_n can be written as a product of disjoint cycles.

8
$$(a_1, \ldots, a_k) = (a_2, a_3, \ldots, a_k, a_1).$$

$$(a_1,\ldots,a_k)^{-1} = (a_k,a_{k-1},\ldots,a_2,a_1).$$

DEFINITION

Suppose that F is a field.

$$\mathfrak{O} \mathbb{S}L_n(F) = \{A \in \mathsf{Mat}_{n \times n}(F) \mid \det(A) = 1_F\}.$$

Fact

Both $\mathbb{G}L_n(F)$ and $\mathbb{S}L_n(F)$ are groups under matrix multiplication.

DEFINITION

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$$

Remark

 Q_8 is a group with multiplication defined as follows.

•
$$1 * a = a$$
 for all $a \in Q_8$.

•
$$(-1) * (-1) = 1$$
; for $a = i, j, k, (-1) * a = -a$ and $(-1) * (-a) = a$.

•
$$ij = k; jk = i; ki = j.$$

•
$$ji = -k; kj = -i; ik = -j.$$