Dihedral Group Symmetric Groups Matrix Groups Quaternian

EXAMPLES OF GROUPS

Kevin James

Dihedral Group Symmetric Groups Matrix Groups Quaternian

DEFINITION

The Dihedral group D_{2n} is the set of rigid motions on the regular n-gon. That is, D_{2n} is the the set of adjacency preserving bijections from the n-gon to itself.

The Dihedral group D_{2n} is the set of rigid motions on the regular n-gon. That is, D_{2n} is the set of adjacency preserving bijections from the n-gon to itself.

FACT

 D_{2n} is a group under composition of functions and $|D_{2n}| = 2n$.

- Define r to be the map that rotates the n-gon clockwise by $\frac{2\pi}{n}$ radians.
- Define s to be the map that reflects the n-gon across the diagonal passing through the vertex labelled 1.

- Define r to be the map that rotates the n-gon clockwise by $\frac{2\pi}{n}$ radians.
- Define s to be the map that reflects the n-gon across the diagonal passing through the vertex labelled 1.

FACT

- 1 The maps $1 = r^0, r, r^2, \dots, r^{n-1}$ are distinct and $r^n = 1$. Thus |r| = n
- **2** |s| = 2.
- **3** The maps $s, sr, sr^2, \ldots, sr^{n-1}$ are distinct from each other and distinct from the maps r^k .
- **6** $rs = sr^{-1} (= sr^{n-1}).$
- $n^{k} s = s r^{-k}$

Note

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1; rs = sr^{-1} \rangle$$
.

Remark

In general if G is a group and all elements of G can be written as words in the elements of some set S, and if all relations among $S \cup \{1\}$ may be derived from the relations in a set $\mathcal R$ then we write

$$G = \langle S \mid \mathcal{R} \rangle$$
.

Such an expression is called a presentation of G.

Let Ω denote any non-empty set, then we define S_{Ω} to be the set of bijections on Ω . If $\Omega = \{1, 2, ..., n\}$, then we denote S_{Ω} simply as S_n .

FACT

For any non-empty set Ω , S_{Ω} is a group under composition of functions.

We have convenient notation for working in S_n .

DEFINITION

We denote by (a_1, \ldots, a_k) the map that sends a_i to a_{i+1} for $1 \le i \le (n-1)$ and a_n to a_1 and leaves all other elements fixed. This map is called a k-cycle.

FACT

- 1 Disjoint cycles commute.
- **2** Each element $\sigma \in S_n$ can be written as a product of disjoint cycles.
- 3 $(a_1,\ldots,a_k)=(a_2,a_3,\ldots,a_k,a_1).$
- $(a_1,\ldots,a_k)^{-1}=(a_k,a_{k-1},\ldots,a_2,a_1).$

Suppose that F is a field.

FACT

Both $\mathbb{G}L_n(F)$ and $\mathbb{S}L_n(F)$ are groups under matrix multiplication.

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$$

Remark

 Q_8 is a group with multiplication defined as follows.

- 1*a = a for all $a \in Q_8$.
- (-1)*(-1) = 1; for a = i, j, k, (-1)*a = -a and (-1)*(-a) = a.
- ij = k; jk = i; ki = j.
- ji = -k; kj = -i; ik = -j.