HOMOMORPHISMS AND ISOMORPHISMS OF GROUPS

Kevin James

DEFINITION

Suppose that (G,*) and (H,\circ) are groups. A function $\phi:G\to H$ is a group homomorphism if

$$\phi(g_1*g_2)=\phi(g_1)\circ\phi(g_2),\qquad\text{for all }g_1,g_2\in G.$$

If in addition, ϕ is a bijection, then it is called a group isomorphism and the groups G and H are said to be isomorphic written $G \cong H$.

EXAMPLE

- $\mathbf{0}$ $G\cong G$.
- $(\mathbb{R},+)\cong (\mathbb{R}^+,*)$ under the isomorphism $x\to \exp(x)$
- **3** If $|\Delta| = |\Omega|$, then $S_{\Lambda} \cong S_{\Omega}$, **Prove this!!!**

Remark

If two groups are isomorphic, then their group theoretic properties are very similar.

FACT

Suppose that G and H are groups and that $G \cong H$. Then,

- |G| = |H|.
- 2 G is Abelian if and only if H is Abelian.
- **3** If ϕ is an isomorphism from G to H, the for all $x \in G$, $|x| = |\phi(x)|$.

Remark

If $G = \langle g_1, \ldots, g_k \mid r_1, r_2, \ldots, r_m \rangle$ and H are groups with $h_1, \ldots, h_k \in H$ satisfying the relations r_i with g_i replaced by b_i . Then, there is a unique homomorphism $\phi : G \to H$ mapping a_i to b_i .

EXAMPLE

Suppose that k|n. Then there is a homomorphism $\phi:D_{2n}\to D_{2k}$.