Homomorphisms and Isomorphisms of Groups

Kevin James

Kevin James Homomorphisms and Isomorphisms of Groups

同 と く き と く き と

æ

DEFINITION

Suppose that (G,*) and (H,\circ) are groups. A function $\phi: G \to H$ is a group homomorphism if

 $\phi(g_1*g_2)=\phi(g_1)\circ\phi(g_2),\qquad\text{for all }g_1,g_2\in G.$

If in addition, ϕ is a bijection, then it is called a group isomorphism and the groups G and H are said to be isomorphic written $G \cong H$.

DEFINITION

Suppose that (G, *) and (H, \circ) are groups. A function $\phi : G \to H$ is a group homomorphism if

 $\phi(g_1*g_2)=\phi(g_1)\circ\phi(g_2),\qquad\text{for all }g_1,g_2\in G.$

If in addition, ϕ is a bijection, then it is called a group isomorphism and the groups G and H are said to be isomorphic written $G \cong H$.

EXAMPLE

向下 イヨト イヨト

If two groups are isomorphic, then their group theoretic properties are very similar.

æ

→ ∃ >

If two groups are isomorphic, then their group theoretic properties are very similar.

Fact

Suppose that G and H are groups and that $G \cong H$. Then,

1
$$|G| = |H|$$
.

- **2** *G* is Abelian if and only if H is Abelian.
- **3** If ϕ is an isomorphism from G to H, the for all $x \in G$, $|x| = |\phi(x)|$.

If $G = \langle g_1, \ldots, g_k \mid r_1, r_2, \ldots, r_m \rangle$ and H are groups with $h_1, \ldots, h_k \in H$ satisfying the relations r_i with g_i replaced by b_i . Then, there is a unique homomorphism $\phi : G \to H$ mapping a_i to b_i .

向下 イヨト イヨト

If $G = \langle g_1, \ldots, g_k \mid r_1, r_2, \ldots, r_m \rangle$ and H are groups with $h_1, \ldots, h_k \in H$ satisfying the relations r_i with g_i replaced by b_i . Then, there is a unique homomorphism $\phi : G \to H$ mapping a_i to b_i .

EXAMPLE

Suppose that k|n. Then there is a homomorphism $\phi: D_{2n} \to D_{2k}$.

・ 同 ト ・ ヨ ト ・ ヨ ト