GROUP ACTIONS

Kevin James

DEFINITION

Suppose that G is a group and A is a nonempty set. A group action of G on A is a function $\cdot: G \times A \to A$ satisfying the following axioms.

- **1** $g_1(g_2 \cdot a) = (g_1 \cdot g_2) \cdot a$ for all $g_1, g_2 \in G$; $a \in A$.
- $2 1_G \cdot a = a \ \forall a \in A.$

Proposition

Suppose that a group G acts on a set A. For all, $g \in G$, let $\sigma_g : A \to A$ be defined by $\sigma_g(a) = g \cdot a$. Then the map $g \mapsto \sigma_g$ is a homomorphism $G \to S_A$.

EXAMPLE

- ① Given any group G and any set A, we have the trivial action $g \cdot a = a$.
- \circ S_A acts on A.
- 3 D_{2n} acts on the regular *n*-gon.
- **1** $\mathbb{G}L_2(\mathbb{Z})$ acts on \mathbb{C} by linear fractional transformations. Check this one.