GROUP ACTIONS

Kevin James

▲□ → ▲圖 → ▲ 国 → ▲ 国 → →

æ

DEFINITION

Suppose that G is a group and A is a nonempty set. A group action of G on A is a function $\cdot : G \times A \rightarrow A$ satisfying the following axioms.

1
$$g_1(g_2 \cdot a) = (g_1 \cdot g_2) \cdot a$$
 for all $g_1, g_2 \in G$; $a \in A$.

$$\mathbf{2} \ \mathbf{1}_{\mathbf{G}} \cdot \mathbf{a} = \mathbf{a} \ \forall \mathbf{a} \in \mathbf{A}.$$

3

イロト イヨト イヨト イヨト

DEFINITION

Suppose that G is a group and A is a nonempty set. A group action of G on A is a function $\cdot : G \times A \rightarrow A$ satisfying the following axioms.

$$\mathbf{2} \ \mathbf{1}_{\mathbf{G}} \cdot \mathbf{a} = \mathbf{a} \ \forall \mathbf{a} \in \mathbf{A}.$$

PROPOSITION

Suppose that a group G acts on a set A. For all, $g \in G$, let $\sigma_g : A \to A$ be defined by $\sigma_g(a) = g \cdot a$. Then the map $g \mapsto \sigma_g$ is a homomorphism $G \to S_A$.

- ▲ 글 ▶ - 글

EXAMPLE

- **1** Given any group G and any set A, we have the trivial action $g \cdot a = a$.
- **2** S_A acts on A.
- **3** D_{2n} acts on the regular *n*-gon.
- **4** $\mathbb{G}L_2(\mathbb{Z})$ acts on \mathbb{C} by linear fractional transformations. Check this one.

æ

< ≣ >