Modules

Kevin James

DEFINITION

Let R be a ring. A <u>left R module</u> is a set M with two operations

Addition: $+: M \times M \rightarrow M$, and

Scalar Multiplication: $\cdot : R \times M \rightarrow M$,

satisfying

- (M, +) is an Abelian group.
- $(r+s)m = rm + sm, \ \forall r, s \in R; m \in M.$
- **6** If R has 1_R , then we require that $1_R m = m$, $\forall m \in M$.

Note

- 1 Right R-modules can be defined similarly.
- 2 Not all left R-modules are right R-modules and vice versa.
- **3** Modules satisfying $1_R m = m$ are called <u>unital modules</u>.
- If R is a field, then M is an R-module if and only if it is a vector space over R.

DEFINITION

Suppose that M is an R-module. An R-submodule of M is a subgroup $N \leq M$ which is closed under the action of ring elements (-i.e. $\forall r \in R; n \in N, rn \in N$.)

EXAMPLE

- 1 R is an R-submodule (left and right). The ideals of R are R-submodules. If R is not commutative then we may get different right and left modules.
- \mathfrak{D}^n is an \mathbb{F} -module.
- **3** R^n is an R-module. The sets $S_i = \{(0_R, \dots, 0_R, r_i, 0_r, \dots, 0_R) \mid r_i \in R\}$ are R-submodules.
- **4** \mathbb{R} is an \mathbb{R} -module, a \mathbb{Q} -module and a \mathbb{Z} -module.
- **5** Suppose that M is an R-module and $I \subseteq R$ which annihilates M. Then, M is also a R/I-module with (r+I)m = rm.

FACT

Any Abelian group is a \mathbb{Z} -module. Its \mathbb{Z} -submodules are the subgroups.

Note

- 1 If A is an Abelian group and $x \in A$ with |x| = n then $nx = 0_A$. This does not happen in vector spaces.
- 2 If |A| = m, then $mx = 0_A$, $\forall x \in A$. Thus $m\mathbb{Z}$ annihilates A. So, A is a $\mathbb{Z}/m\mathbb{Z}$ -module.
- 3 If p is a prime and px = 0 for all $x \in A$, then A is a $\mathbb{Z}/p\mathbb{Z}$ -module, that is a vector space over $\mathbb{Z}/p\mathbb{Z}$.
- **4** The Klein 4 group is a vector space over $\mathbb{Z}/2\mathbb{Z}$.

EXAMPLE

Suppose that V is a vector space over the field F and $T:V\to V$ is a linear transformation. Then we can place a F[x]-module structure on V by defining

$$\left(\sum_{n=0}^{d_f} f_n x^n\right) \cdot v = \sum_{n=0}^{d_f} f_n T^n(v).$$

Proposition (Submodule Criterion)

Suppose $N \subseteq M$. N is a submodule of M if and only if

- $\mathbf{0}$ $N \neq \emptyset$, and
- $2x + ry \in N$, $\forall r \in R$; x, y, N.

DEFINITION

Suppose that R is a commutative ring with 1_R . An R-Algebra is a ring A with 1_A with a homomorphism $f:R\to A$ mapping 1_R to 1_A and such that $f(R)\subset \operatorname{Center}(A)$.

Note

We can put an R-module structure on an R-algebra A by defining

$$r \cdot a = f(r)a$$
.

DEFINITION

If A and B are R-algebras, an R-algebra homomorphism is a ring homomorphism $\phi:A\to B$ mapping $1_a\to 1_B$ such that $\phi(ra)=r\phi(a),\ \forall r\in R;\ a\in A.$

EXAMPLE

- lacktriangle A ring with 1 is a \mathbb{Z} algebra.
- 2 If $1_A \in R \subseteq Center(A)$ then A is an R-algebra.
- **3** Suppose that R is a commutative ring with 1_R . Then R[x] is an R-algebra.