MODULES

Kevin James

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

2

Let *R* be a ring. A left *R* module is a set *M* with two operations Addition: $+: M \times M \rightarrow M$, and Scalar Multiplication: $\cdot: R \times M \rightarrow M$,

satisfying

(
$$M$$
,+) is an Abelian group.

$$(rs)m = r(sm) \ \forall r, s \in R; m \in M.$$

$$(r+s)m = rm + sm, \forall r, s \in R; m \in M.$$

6 If *R* has 1_R , then we require that $1_R m = m$, $\forall m \in M$.

Note

- 1 Right *R*-modules can be defined similarly.
- 2 Not all left *R*-modules are right *R*-modules and vice versa.
- **8** Modules satisfying $1_R m = m$ are called <u>unital modules</u>.
- If R is a field, then M is an R-module if and only if it is a vector space over R.

Suppose that *M* is an *R*-module. An *R*-submodule of *M* is a subgroup $N \le M$ which is closed under the action of ring elements (-i.e. $\forall r \in R; n \in N, rn \in N$.)

臣

< ≣ ▶

Suppose that *M* is an *R*-module. An *R*-submodule of *M* is a subgroup $N \le M$ which is closed under the action of ring elements (-i.e. $\forall r \in R; n \in N, rn \in N$.)

EXAMPLE

- *R* is an *R*-submodule (left and right). The ideals of *R* are *R*-submodules. If *R* is not commutative then we may get different right and left modules.
- **2** \mathbb{F}^n is an \mathbb{F} -module.
- **3** R^n is an R-module. The sets $S_i = \{(0_R, \dots, 0_R, r_i, 0_r, \dots, 0_R) \mid r_i \in R\}$ are R-submodules.
- **4** \mathbb{R} is an \mathbb{R} -module, a \mathbb{Q} -module and a \mathbb{Z} -module.
- **5** Suppose that *M* is an *R*-module and $I \leq R$ which annihilates *M*. Then, *M* is also a R/I-module with (r + I)m = rm.

イロン 人間 とくほと くほと

Fact

Any Abelian group is a $\mathbb{Z}\text{-module}.$ Its $\mathbb{Z}\text{-submodules}$ are the subgroups.

ヘロト 人間 とくほ とくほとう

Ð,

Fact

Any Abelian group is a \mathbb{Z} -module. Its \mathbb{Z} -submodules are the subgroups.

Note

- **1** If A is an Abelian group and $x \in A$ with |x| = n then $nx = 0_A$. This does not happen in vector spaces.
- If |A| = m, then mx = 0_A, ∀x ∈ A. Thus mZ annihilates A. So, A is a Z/mZ-module.
- **3** If p is a prime and px = 0 for all $x \in A$, then A is a $\mathbb{Z}/p\mathbb{Z}$ -module, that is a vector space over $\mathbb{Z}/p\mathbb{Z}$.
- **4** The Klein 4 group is a vector space over $\mathbb{Z}/2\mathbb{Z}$.

Suppose that V is a vector space over the field F and $T: V \to V$ is a linear transformation. Then we can place a F[x]-module structure on V by defining

$$\left(\sum_{n=0}^{d_f} f_n x^n\right) \cdot v = \sum_{n=0}^{d_f} f_n T^n(v).$$

Suppose that V is a vector space over the field F and $T: V \to V$ is a linear transformation. Then we can place a F[x]-module structure on V by defining

$$\left(\sum_{n=0}^{d_f} f_n x^n\right) \cdot v = \sum_{n=0}^{d_f} f_n T^n(v).$$

PROPOSITION (SUBMODULE CRITERION)

Suppose $N \subseteq M$. N is a submodule of M if and only if

1 $N \neq \emptyset$, and

$$2 x + ry \in N, \forall r \in R; x, y, N.$$

イロン イヨン イヨン

Suppose that *R* is a commutative ring with 1_R . An *R*-Algebra is a ring *A* with 1_A with a homomorphism $f : R \to A$ mapping 1_R to 1_A and such that $f(R) \subset \text{Center}(A)$.

イロト イヨト イヨト イヨト

臣

Suppose that *R* is a commutative ring with 1_R . An *R*-Algebra is a ring *A* with 1_A with a homomorphism $f : R \to A$ mapping 1_R to 1_A and such that $f(R) \subset \text{Center}(A)$.

Note

We can put an *R*-module structure on an *R*-algebra *A* by defining

 $r \cdot a = f(r)a.$

イロト イヨト イヨト イヨト

Suppose that *R* is a commutative ring with 1_R . An *R*-Algebra is a ring *A* with 1_A with a homomorphism $f : R \to A$ mapping 1_R to 1_A and such that $f(R) \subset \text{Center}(A)$.

Note

We can put an *R*-module structure on an *R*-algebra *A* by defining

$$r \cdot a = f(r)a.$$

DEFINITION

If A and B are R-algebras, an R-algebra homomorphism is a ring homomorphism $\phi : A \to B$ mapping $1_a \to 1_B$ such that $\phi(ra) = r\phi(a), \forall r \in R; a \in A.$

イロト イヨト イヨト イヨト

- **1** A ring with 1 is a \mathbb{Z} algebra.
- **2** If $1_A \in R \subseteq \text{Center}(A)$ then A is an R-algebra.
- Suppose that R is a commutative ring with 1_R. Then R[x] is an R-algebra.

- **1** A ring with 1 is a \mathbb{Z} algebra.
- **2** If $1_A \in R \subseteq \text{Center}(A)$ then A is an R-algebra.
- Suppose that R is a commutative ring with 1_R. Then R[x] is an R-algebra.