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Definition

Suppose N1, . . . ,Nn are R-submodules of M.

1 N1 + · · ·+ Nn = {
∑n

i=1 ai | ai ∈ Ni}.

2 For A ⊆ M, let
RA = {

∑m
i=1 riai | ri ∈ R; ai ∈ A; 0 < m ∈ Z}, and

R∅ = {0}.
• If A = {a1, . . . , an}, then RA = Ra1 + · · ·+ Ran.
• We call RA the submodule of M generated by A.
• If N = RA for A ⊆ M, then we say that A is a set of

generators for N.

3 If N ≤ M and N = RA where |A| <∞, then we say that N is
finitely generated.

4 If N = Ra, then N is said to be cyclic.
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Note

1 Since 1 ∈ R, A ⊆ RA.

2 RA is the smallest submodule containing A.

3 If Ni = RAi for 1 ≤ i ≤ m, then
N1 + · · ·+ Nm = R[A1 ∪ · · · ∪ Am].

4 If N ≤ M, there may be many different generating sets. If N
is finitely generated, then there is a minimal size among all
generating sets. We call a generating set of this size a
minimal generating set. It is not necessarily unique.

Example

Let R = F [x1, x2, . . . ] where F is a field.
Take A = {x1, . . . } and N = RA.
Note that R is a cyclic R −module, while
N is a proper subset of R is not finitely generated.
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Example

Suppose that V is a vector space over a field F and T : V → V is
a linear transformation. When is V cyclic as an F [x ]-module with

structure as before (p(x) · ~v =
∑dp

i=1 piT
i (~v)).

Definition

Suppose that M1, . . . ,Mk are R-modules. Then M1 × · · · ×Mk is
an R module with addition and R-action defined component-wise.

Note

M1 × · · · ×Mk is referred to as the external direct sum and
denoted M1 ⊕ · · · ⊕Mk . When the number of modules is not
finite, the definition of direct sum and direct product may differ.
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Proposition

Suppose that N1, . . . ,Nk ≤ M. The following are equivalent.

1 The map π : N1 × · · · × Nk → N1 + · · ·+ Nk defined by
π ((a1, . . . , ak)) =

∑k
i=1 ai . is an isomorphism.

2 Nj ∩ (N1 + · · ·+ Nj−1 + Nj+1 + · · ·+ Nk) = 0, ∀1 ≤ j ≤ k.

3 Every x ∈ N1 + · · ·+ Nk has a unique expression of the form
x =

∑k
i=1 ai with ai ∈ Ni .

Definition

Suppose that Ni , . . . ,Nk ≤ M and M = N1 + · · ·+ Nk and
Ni , . . . ,Nk satisfy the condition of the previous Proposition. Then
we write M = N1 ⊕ · · · ⊕ Nk
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Definition

An R-module F is said to be free on a set A if ∀0F 6= x ∈ F there
exists a unique choice of r1, . . . , rn ∈ R; a1, . . . , an ∈ A such that
x =

∑n
i=1 riai .

In this case, we say that A is a basis set or a set of free generators
for F .
If R is commutative then |A| is called the rank of F .

Example

Take R = Z, M = Z/2Z⊕ Z/2Z and N1 = N2 = Z/2Z.
Then, each element of M can be uniquely written as n1 + n2
(ni ∈ Ni ). However, n1 = 3n1 = 5n1 = . . . . Thus, M is not a free
Z-module on {(0, 1), (1, 0)}.
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Theorem

For any set A, there is a free R-module F (A) on the set A.
Further, F (A) satisfies the following universal property. If M is any
R-module and φ : A→ M is any map. Then there is a unique
homomorphism Φ : F (A)→ M satisfying Φ(a) = φ(a).

A ↪
inclusion−−−−−→ F (A)

φ↘ ↓ Φ

M

Corollary

1 If F1 and F2 are free over A, there exists a unique
isomorphism φ : F1 → F2 with φ|A = id.

2 If F is any free R-module with basis A, then F ∼= F (A). In
particular, F has the same universal property as F (A).
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