Generation of Modules, Direct Sums and Free Modules

Kevin James

Kevin James Generation of Modules, Direct Sums and Free Modules

A 3 5 A 3 5

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

1
$$N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

- **1** $N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$
- **2** For $A \subseteq M$, let $RA = \{\sum_{i=1}^{m} r_i a_i \mid r_i \in R; a_i \in A; 0 < m \in \mathbb{Z}\}$, and $R\emptyset = \{0\}$.

- 本部 ト イヨト - ヨト - ヨ

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

- **1** $N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$
- **2** For $A \subseteq M$, let $RA = \{\sum_{i=1}^{m} r_i a_i \mid r_i \in R; a_i \in A; 0 < m \in \mathbb{Z}\}$, and $R\emptyset = \{0\}$.
 - If $A = \{a_1, ..., a_n\}$, then $RA = Ra_1 + \cdots + Ra_n$.

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

- **1** $N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$
- **2** For $A \subseteq M$, let $RA = \{\sum_{i=1}^{m} r_i a_i \mid r_i \in R; a_i \in A; 0 < m \in \mathbb{Z}\}$, and $R\emptyset = \{0\}$.
 - If $A = \{a_1, ..., a_n\}$, then $RA = Ra_1 + \cdots + Ra_n$.
 - We call *RA* the submodule of *M* generated by *A*.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

- **1** $N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$
- **2** For $A \subseteq M$, let $RA = \{\sum_{i=1}^{m} r_i a_i \mid r_i \in R; a_i \in A; 0 < m \in \mathbb{Z}\}$, and $R\emptyset = \{0\}$.
 - If $A = \{a_1, ..., a_n\}$, then $RA = Ra_1 + \cdots + Ra_n$.
 - We call *RA* the submodule of *M* generated by *A*.
 - If N = RA for A ⊆ M, then we say that A is a set of generators for N.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

- **1** $N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$
- **2** For $A \subseteq M$, let $RA = \{\sum_{i=1}^{m} r_i a_i \mid r_i \in R; a_i \in A; 0 < m \in \mathbb{Z}\}$, and $R\emptyset = \{0\}$.
 - If $A = \{a_1, ..., a_n\}$, then $RA = Ra_1 + \cdots + Ra_n$.
 - We call *RA* the submodule of *M* generated by *A*.
 - If N = RA for A ⊆ M, then we say that A is a set of generators for N.
- **3** If $N \le M$ and N = RA where $|A| < \infty$, then we say that N is finitely generated.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose N_1, \ldots, N_n are *R*-submodules of *M*.

- **1** $N_1 + \cdots + N_n = \{\sum_{i=1}^n a_i \mid a_i \in N_i\}.$
- **2** For $A \subseteq M$, let $RA = \{\sum_{i=1}^{m} r_i a_i \mid r_i \in R; a_i \in A; 0 < m \in \mathbb{Z}\}$, and $R\emptyset = \{0\}$.
 - If $A = \{a_1, ..., a_n\}$, then $RA = Ra_1 + \cdots + Ra_n$.
 - We call *RA* the submodule of *M* generated by *A*.
 - If N = RA for A ⊆ M, then we say that A is a set of generators for N.
- **3** If $N \le M$ and N = RA where $|A| < \infty$, then we say that N is finitely generated.
- **4** If N = Ra, then N is said to be cyclic.

・ 何 ト ・ ヨ ト ・ ヨ ト

1 Since $1 \in R$, $A \subseteq RA$.

Kevin James Generation of Modules, Direct Sums and Free Modules

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

1 Since $1 \in R$, $A \subseteq RA$.

2 RA is the smallest submodule containing A.

イロト イヨト イヨト イヨト

臣

1 Since $1 \in R$, $A \subseteq RA$.

 \bigcirc RA is the smallest submodule containing A.

3 If
$$N_i = RA_i$$
 for $1 \le i \le m$, then $N_1 + \dots + N_m = R[A_1 \cup \dots \cup A_m]$

イロト イヨト イヨト イヨト

臣

1 Since $1 \in R$, $A \subseteq RA$.

2 RA is the smallest submodule containing A.

8 If
$$N_i = RA_i$$
 for $1 \le i \le m$, then $N_1 + \cdots + N_m = R[A_1 \cup \cdots \cup A_m]$

④ If N ≤ M, there may be many different generating sets. If N is finitely generated, then there is a minimal size among all generating sets. We call a generating set of this size a minimal generating set. It is not necessarily unique.

伺 ト イヨト イヨト

1 Since $1 \in R$, $A \subseteq RA$.

2 RA is the smallest submodule containing A.

8 If
$$N_i = RA_i$$
 for $1 \le i \le m$, then $N_1 + \cdots + N_m = R[A_1 \cup \cdots \cup A_m]$

④ If N ≤ M, there may be many different generating sets. If N is finitely generated, then there is a minimal size among all generating sets. We call a generating set of this size a minimal generating set. It is not necessarily unique.

EXAMPLE

Let
$$R = F[x_1, x_2, ...]$$
 where F is a field.
Take $A = \{x_1, ...\}$ and $N = RA$.
Note that R is a cyclic R – module, while

・ 同 ト ・ ヨ ト ・ ヨ

1 Since $1 \in R$, $A \subseteq RA$.

2 RA is the smallest submodule containing A.

8 If
$$N_i = RA_i$$
 for $1 \le i \le m$, then $N_1 + \cdots + N_m = R[A_1 \cup \cdots \cup A_m]$

④ If N ≤ M, there may be many different generating sets. If N is finitely generated, then there is a minimal size among all generating sets. We call a generating set of this size a minimal generating set. It is not necessarily unique.

EXAMPLE

Let
$$R = F[x_1, x_2, ...]$$
 where F is a field.
Take $A = \{x_1, ...\}$ and $N = RA$.
Note that R is a cyclic R – module, while
 N is a proper subset of R is not finitely generated

EXAMPLE

Suppose that V is a vector space over a field F and $T: V \to V$ is a linear transformation. When is V cyclic as an F[x]-module with structure as before $(p(x) \cdot \vec{v} = \sum_{i=1}^{d_p} p_i T^i(\vec{v}))$.

向 ト イヨ ト イヨト

EXAMPLE

Suppose that V is a vector space over a field F and $T: V \to V$ is a linear transformation. When is V cyclic as an F[x]-module with structure as before $(p(x) \cdot \vec{v} = \sum_{i=1}^{d_p} p_i T^i(\vec{v}))$.

DEFINITION

Suppose that M_1, \ldots, M_k are *R*-modules. Then $M_1 \times \cdots \times M_k$ is an *R* module with addition and *R*-action defined component-wise.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

EXAMPLE

Suppose that V is a vector space over a field F and $T: V \to V$ is a linear transformation. When is V cyclic as an F[x]-module with structure as before $(p(x) \cdot \vec{v} = \sum_{i=1}^{d_p} p_i T^i(\vec{v}))$.

DEFINITION

Suppose that M_1, \ldots, M_k are *R*-modules. Then $M_1 \times \cdots \times M_k$ is an *R* module with addition and *R*-action defined component-wise.

Note

 $M_1 \times \cdots \times M_k$ is referred to as the <u>external direct sum</u> and denoted $M_1 \oplus \cdots \oplus M_k$. When the number of modules is not finite, the definition of direct sum and direct product may differ.

イロト イヨト イヨト

PROPOSITION

Suppose that $N_1, \ldots, N_k \leq M$. The following are equivalent.

1 The map
$$\pi : N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$$
 defined by $\pi((a_1, \ldots, a_k)) = \sum_{i=1}^k a_i$. is an isomorphism.

②
$$N_j \cap (N_1 + \cdots + N_{j-1} + N_{j+1} + \cdots + N_k) = 0, \forall 1 \le j \le k.$$

3 Every $x \in N_1 + \cdots + N_k$ has a unique expression of the form $x = \sum_{i=1}^k a_i$ with $a_i \in N_i$.

<ロ> (四) (四) (三) (三) (三)

PROPOSITION

Suppose that $N_1, \ldots, N_k \leq M$. The following are equivalent.

1 The map
$$\pi : N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$$
 defined by $\pi((a_1, \ldots, a_k)) = \sum_{i=1}^k a_i$. is an isomorphism.

- **2** $N_j \cap (N_1 + \cdots + N_{j-1} + N_{j+1} + \cdots + N_k) = 0, \forall 1 \le j \le k.$
- **3** Every $x \in N_1 + \cdots + N_k$ has a unique expression of the form $x = \sum_{i=1}^k a_i$ with $a_i \in N_i$.

DEFINITION

Suppose that $N_i, \ldots, N_k \leq M$ and $M = N_1 + \cdots + N_k$ and N_i, \ldots, N_k satisfy the condition of the previous Proposition. Then we write $M = N_1 \oplus \cdots \oplus N_k$

An *R*-module *F* is said to be <u>free on a set *A*</u> if $\forall 0_F \neq x \in F$ there exists a unique choice of $r_1, \ldots, r_n \in R$; $a_1, \ldots, a_n \in A$ such that $x = \sum_{i=1}^n r_i a_i$.

・ 同 ト ・ ヨ ト ・ ヨ ト

An *R*-module *F* is said to be free on a set *A* if $\forall 0_F \neq x \in F$ there exists a unique choice of $r_1, \ldots, r_n \in R$; $a_1, \ldots, a_n \in A$ such that $x = \sum_{i=1}^n r_i a_i$. In this case, we say that *A* is a basis set or a set of free generators for *F*.

向下 イヨト イヨト

An *R*-module *F* is said to be free on a set *A* if $\forall 0_F \neq x \in F$ there exists a unique choice of $r_1, \ldots, r_n \in R$; $a_1, \ldots, a_n \in A$ such that $x = \sum_{i=1}^n r_i a_i$. In this case, we say that *A* is a basis set or a set of free generators for *F*.

If R is commutative then |A| is called the rank of F.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

An *R*-module *F* is said to be free on a set *A* if $\forall 0_F \neq x \in F$ there exists a unique choice of $r_1, \ldots, r_n \in R$; $a_1, \ldots, a_n \in A$ such that $x = \sum_{i=1}^n r_i a_i$. In this case, we say that *A* is a basis set or a set of free generators for *F*.

If R is commutative then |A| is called the rank of F.

EXAMPLE

Take $R = \mathbb{Z}$, $M = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $N_1 = N_2 = \mathbb{Z}/2\mathbb{Z}$.

(4月) トイヨト イヨト

An *R*-module *F* is said to be <u>free on a set *A*</u> if $\forall 0_F \neq x \in F$ there exists a unique choice of $r_1, \ldots, r_n \in R$; $a_1, \ldots, a_n \in A$ such that $x = \sum_{i=1}^n r_i a_i$. In this case, we say that *A* is a <u>basis set</u> or a <u>set of free generators</u> for *F*.

If R is commutative then |A| is called the rank of F.

EXAMPLE

Take $R = \mathbb{Z}$, $M = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $N_1 = N_2 = \mathbb{Z}/2\mathbb{Z}$. Then, each element of M can be uniquely written as $n_1 + n_2$ $(n_i \in N_i)$. However, $n_1 = 3n_1 = 5n_1 = \dots$ Thus, M is not a free \mathbb{Z} -module on $\{(0, 1), (1, 0)\}$.

イロン 不同 とうほう 不同 とう

Theorem

For any set A, there is a free R-module F(A) on the set A. Further, F(A) satisfies the following universal property. If M is any R-module and $\phi : A \to M$ is any map. Then there is a <u>unique</u> homomorphism $\Phi : F(A) \to M$ satisfying $\Phi(a) = \phi(a)$.

$$egin{array}{cc} \mathsf{A} & \stackrel{inclusion}{\longrightarrow} & \mathsf{F}(\mathsf{A}) \ \phi\searrow & \downarrow \Phi \ & & & \mathcal{M} \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

For any set A, there is a free R-module F(A) on the set A. Further, F(A) satisfies the following universal property. If M is any R-module and $\phi : A \to M$ is any map. Then there is a <u>unique</u> homomorphism $\Phi : F(A) \to M$ satisfying $\Phi(a) = \phi(a)$.

$$egin{array}{cc} A & \stackrel{inclusion}{\longrightarrow} & F(A) \ \phi\searrow & \downarrow \Phi \ & & & M \end{array}$$

COROLLARY

- If F₁ and F₂ are free over A, there exists a unique isomorphism φ : F₁ → F₂ with φ|_A = id.
- **2** If F is any free R-module with basis A, then $F \cong F(A)$. In particular, F has the same universal property as F(A).

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶