BASIC THEORY OF FIELD EXTENSIONS

Kevin James

Kevin James Basic Theory of Field Extensions

イロン 不同 とうほう 不同 とう

臣

The <u>characteristic</u> of a field *F* is defined to be the smallest integer *p* such that $p \cdot 1_F = 0_F$ is such *p* exists and 0 otherwise.

イロト イヨト イヨト イヨト

크

The <u>characteristic</u> of a field F is defined to be the smallest integer p such that $p \cdot 1_F = 0_F$ is such p exists and 0 otherwise.

Fact

If F is a field and $char(F) = p \neq 0$, then p is prime.

<ロ> (四) (四) (三) (三) (三)

The <u>characteristic</u> of a field *F* is defined to be the smallest integer *p* such that $p \cdot 1_F = 0_F$ is such *p* exists and 0 otherwise.

Fact

If F is a field and $char(F) = p \neq 0$, then p is prime.

DEFINITION

The prime subfield of a field F is the subfield generated by 1_F .

イロン 不同 とうほう 不同 とう

The <u>characteristic</u> of a field *F* is defined to be the smallest integer *p* such that $p \cdot 1_F = 0_F$ is such *p* exists and 0 otherwise.

Fact

If F is a field and $char(F) = p \neq 0$, then p is prime.

Definition

The prime subfield of a field F is the subfield generated by 1_F .

Fact

Suppose that F is a field and $L \subseteq F$ is its prime subfield. If char(F) = 0, then $L \cong \mathbb{Q}$. If char(F) = p > 0, then $L \cong \mathbb{F}_p$.

イロト イヨト イヨト イヨト

If K is a field containing the field F, then we say that K is an extension of F. We denote this by K/F or

K | F

Note that any field is an extension of its prime subfield. We sometimes say that the prime subfield is the base field of the extension.

Definition

If K is a field containing the field F, then we say that K is an extension of F. We denote this by K/F or

Κ

F

Note that any field is an extension of its prime subfield. We sometimes say that the prime subfield is the base field of the extension.

Definition

We define the degree of K/F denoted [K : F] to be dim_F(K).

PROPOSITION

Suppose that $\phi : F \to F'$ is a homomorphism of fields. Then ϕ is either identically 0 or injective.

イロン 不同 とうほう 不同 とう

臣

PROPOSITION

Suppose that $\phi : F \to F'$ is a homomorphism of fields. Then ϕ is either identically 0 or injective.

Theorem

Suppose that F is a field and that $p(x) \in F[x]$ is irreducible. Then F[x]/(p(x)) is an extension of F in which p(x) has a root.

イロン 不同 とうほう 不同 とう

PROPOSITION

Suppose that $\phi : F \to F'$ is a homomorphism of fields. Then ϕ is either identically 0 or injective.

Theorem

Suppose that F is a field and that $p(x) \in F[x]$ is irreducible. Then F[x]/(p(x)) is an extension of F in which p(x) has a root.

THEOREM

pose that F is a field and that $p(x) \in F[x]$ is irreducible with deg(p) = n. Let K = F[x]/(p(x)) and let $\pi : F[x] \to K$ be the canonical projection homomorphism. Let $\theta = \pi(x) = x + (p(x))$. Then $\mathcal{B} = \{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ is a basis for K/F. Thus [K : F] = n.

<ロ> <同> <同> < 回> < 回> < 回> = 三 =

COROLLARY

Let K and F be as in the previous theorem and let $a(\theta), b(\theta) \in K$. Then,

$$egin{aligned} & (heta)+b(heta)&=&(a+b)(heta)\ & a(heta)b(heta)&=&(ab)(heta)=r(heta), \end{aligned}$$

where a(x)b(x) = p(x)q(x) + r(x) with deg(r) < n.

Definition

- Suppose that K is an extension of F and {α_i}_{i∈I} ⊆ K. The smallest subfield of K containing F and {α_i}_{i∈I} is denoted F ({α_i}_{i∈I}).
- 2) If $K = F(\alpha)$, then K is called a simple extension and α is called a primitive element of F.

ヘロト ヘ回ト ヘヨト ヘヨト

Theorem

Suppose that $p(x) \in F[x]$ is irreducible and $K \supseteq F$ is an extension of F containing a root α of p(x). Then $F(\alpha) \cong F[x]/(p(x))$.

イロン イヨン イヨン ・ ヨン

臣

Theorem

Suppose that $p(x) \in F[x]$ is irreducible and $K \supseteq F$ is an extension of F containing a root α of p(x). Then $F(\alpha) \cong F[x]/(p(x))$.

COROLLARY

Suppose that $p(x) \in F[x]$ is irreducible with $\deg(p(x)) = n$ and $K \supseteq F$ is an extension of F containing a root α of p(x). Then

$$F(\alpha) = \{\sum_{i=0}^{n-1} a_i \alpha^i \mid a_i \in F\} \subseteq K.$$

・ロン ・四 と ・ 回 と ・ 回 と

Theorem

Suppose that $p(x) \in F[x]$ is irreducible and $K \supseteq F$ is an extension of F containing a root α of p(x). Then $F(\alpha) \cong F[x]/(p(x))$.

COROLLARY

Suppose that $p(x) \in F[x]$ is irreducible with $\deg(p(x)) = n$ and $K \supseteq F$ is an extension of F containing a root α of p(x). Then

$$F(\alpha) = \{\sum_{i=0}^{n-1} a_i \alpha^i \mid a_i \in F\} \subseteq K.$$

THEOREM

Let $\phi : F \to F'$ be an isomorphism and let $p(x) \in F[x]$ be irreducible. Let $\phi(p(x)) = p'(x) \in F'[x]$. Let α be a root of p(x)in some extension K/F and let β be a root of p'(x) in some extension K'/F'. Then there exists an isomorphism $\sigma : F(\alpha) \to F'(\beta)$ with $\sigma(\alpha) = \beta$ and $\sigma|_F = \phi$.