ALGEBRAIC EXTENSIONS

Kevin James

DEFINITION

Suppose that $K \supseteq F$ is an extension of fields. Then $\alpha \in K$ is algebraic over F if $\exists f(x) \in F[x]$ such that $f(\alpha) = 0$. Otherwise, α is <u>transcendental</u> over F.

Proposition

Let α be algebraic over F. Then there is a unique monic irreducible polynomial $m_{\alpha,F}(x) \in F[x]$ such that $m_{\alpha,F}(\alpha) = 0$. Further, if $f \in F[x]$ has $f(\alpha) = 0$, then $m_{\alpha,F}(x)|f(x)$ in F[x].

COROLLARY

Suppose that L/F is an extension of fields and α is algebraic over F and L. Then $m_{\alpha,L}(x)|m_{\alpha,F}(x)$ in L[x].

DEFINITION

The polynomial $m_{\alpha,F}(x)$ is the minimum polynomial of α over F, and we put

$$\deg(\alpha) = \deg(m_{\alpha,F}(x).$$

Proposition

Suppose that α is algebraic over F. Then,

$$F(\alpha) \cong F[x]/m_{\alpha,F}(x)$$
.

Also,
$$[F(\alpha):F] = \deg(m_{\alpha,F}(x)) = \deg(\alpha)$$
.

Proposition

We note that α is algebraic over F if and only if $[F(\alpha):F]<\infty$. More precisely, we have the following. If $\alpha\in K$ and [K:F]=n, then $\deg(\alpha)\leq n$. If $\deg(\alpha)\leq n$ then $[F(\alpha):F]\leq n$.

COROLLARY

If $[K:F] < \infty$, then K is algebraic over F (-i.e. every element of K is algebraic over F).

Theorem

Suppose that $F \subseteq K \subseteq L$ are fields. Then [L : F] = [L : K][K : F].

COROLLARY

Suppose that L/F is a finite extension and that $F \subseteq K \subseteq L$. Then [K : F]|[L : F].

COROLLARY

If [L:F] = p is prime, then thre are no intermediate extensions.

DEFINITION

We say that the extension K/F is finitely generated if there exists $\alpha_1, \ldots, \alpha_k \in K$ such that $K = F(\overline{\alpha_1, \ldots, \alpha_k})$.

Note

Note that F/K finitely generated does **NOT** imply that F/K is finite dimensional.

LEMMA

$$F(\alpha, \beta) = F(\alpha)(\beta).$$

THEOREM

The extension K/F is finite if and only if $K = F(\alpha_1, \alpha_2, ..., \alpha_k)$ where each α_i is algebraic over F. More precisely if $\alpha_1, ..., \alpha_k$ are algebraic over F, then $[F(\alpha_1, \alpha_2, ..., \alpha_k) : F] \le \prod_{i=1}^k \deg(\alpha_i)$.

COROLLARY

Suppose that α and β are algebraic over a field F. Then so are $\alpha \pm \beta$, $\alpha\beta$, α/β ($\beta \neq 0$), α^{-1} ($\alpha \neq 0$).

COROLLARY

Let L/F be an arbitrary extension of fields. Then $K = \{ \alpha \in L \mid \alpha \text{ is algebraic over } F \}$ is a field with $F \subseteq K \subseteq L$.

THEOREM

If K is algebraic over F and L is algebraic over K, then L is algebraic over F.

DEFINITION

Let K be a field containing subfields K_1 and K_2 . We define the composite of K_1 and K_2 denoted K_1K_2 to be the smallest subfield of K containing both K_1 and K_2 .

Proposition

Suppose that K_1 and K_2 are finite extensions of F contained in a field K. Then,

$$[K_1K_2:F] \leq [K_1:F][K_2:F],$$

with equality if and only if and F-basis for one of K_1 or K_2 remains linearly independent over the other. If $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m are bases for K_1 and K_2 respectively as vector spaces over F, then $\{\alpha_i \beta_i\}_{1 \le i \le n, 1 \le j \le m}$ spans $K_1 K_2$.

COROLLARY

Suppose that $[K_1:F]=n$; $[K_2:F]=m$ where (m,n)=1. Then $[K_1K_2:F]=mn$.