Splitting Fields and Algebraic Closures

Kevin James

Kevin James Splitting Fields and Algebraic Closures

(1日) (日) (日)

æ

The extension K/F is called the <u>splitting field</u> for the polynomial $f(x) \in F[x]$ if f(x) factors completely into linear factors in K[x] and f(x) does not factor into linear factors over L[x] for any $K \supset L \supseteq F$.

イロン イ部ン イヨン イヨン 三日

The extension K/F is called the <u>splitting field</u> for the polynomial $f(x) \in F[x]$ if f(x) factors completely into linear factors in K[x] and f(x) does not factor into linear factors over L[x] for any $K \supset L \supseteq F$.

Theorem

For any field F and any $f(x) \in F[x]$, there exists an extension K/F which is a splitting field for f(x).

・ロト ・回ト ・ヨト ・ヨト

The extension K/F is called the <u>splitting field</u> for the polynomial $f(x) \in F[x]$ if f(x) factors completely into linear factors in K[x] and f(x) does not factor into linear factors over L[x] for any $K \supset L \supseteq F$.

Theorem

For any field F and any $f(x) \in F[x]$, there exists an extension K/F which is a splitting field for f(x).

DEFINITION

If K is an algebraic extension of F which is the splitting field over F for a collection of polynomials $f(x) \in F[x]$ then K is called a <u>normal</u> extension of F.

イロン 不同と 不同と 不同と

A splitting field of a polynomial of degree n over F is of degree at most n! over F.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

A splitting field of a polynomial of degree n over F is of degree at most n! over F.

Theorem

Let $\phi: F \to F'$ be an isomorphism of fields. let $f(x) \in F[x]$ and let $f'(x) = \phi(f(x)) \in F'[x]$. Let E/F be a splitting field of f and let E'/F' be a splitting field of f'. The isomorphism ϕ extends to an isomorphism $\sigma: E \to E'$.

・ロト ・回ト ・ヨト ・ヨト

A splitting field of a polynomial of degree n over F is of degree at most n! over F.

Theorem

Let $\phi : F \to F'$ be an isomorphism of fields. let $f(x) \in F[x]$ and let $f'(x) = \phi(f(x)) \in F'[x]$. Let E/F be a splitting field of f and let E'/F' be a splitting field of f'. The isomorphism ϕ extends to an isomorphism $\sigma : E \to E'$.

COROLLARY (UNIQUENESS OF SPLITTING FIELDS)

Any two splitting fields for a polynomial $f(x) \in F[x]$ over F are isomorphic.

・ロト ・回ト ・ヨト ・ヨト

The field \overline{F} is called an algebraic closure of F if \overline{F} is algebraic over F and if every polynomial $f(x) \in F[x]$ splits completely over \overline{F}

同 とくほ とくほと

The field \overline{F} is called an algebraic closure of F if \overline{F} is algebraic over F and if every polynomial $f(x) \in F[x]$ splits completely over \overline{F}

DEFINITION

A field K is said to be algebraically closed if all polynomials $f(x) \in K[x]$ have a root in K.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

The field \overline{F} is called an algebraic closure of F if \overline{F} is algebraic over F and if every polynomial $f(x) \in F[x]$ splits completely over \overline{F}

DEFINITION

A field K is said to be algebraically closed if all polynomials $f(x) \in K[x]$ have a root in K.

PROPOSITION

Let \overline{F} be an algebraic closure of F. Then \overline{F} is algebraically closed.

Definition

The field \overline{F} is called an algebraic closure of F if \overline{F} is algebraic over F and if every polynomial $f(x) \in F[x]$ splits completely over \overline{F}

DEFINITION

A field K is said to be algebraically closed if all polynomials $f(x) \in K[x]$ have a root in K.

PROPOSITION

Let \overline{F} be an algebraic closure of F. Then \overline{F} is algebraically closed.

PROPOSITION

For any field F there exists an algebraically closed field K containing F.

・ロト ・日本 ・モート ・モート

Let K be an algebraically closed field and let F be a subfield of K. Then the collection of elements \overline{F} of K which are algebraic over F is an algebraic closure of F. An algebraic closure of F is unique up to isomorphism.

Let K be an algebraically closed field and let F be a subfield of K. Then the collection of elements \overline{F} of K which are algebraic over F is an algebraic closure of F. An algebraic closure of F is unique up to isomorphism.

THEOREM (FUNDAMENTAL THEOREM OF ALGEBRA)

The field \mathbb{C} is algebraically closed.

Let K be an algebraically closed field and let F be a subfield of K. Then the collection of elements \overline{F} of K which are algebraic over F is an algebraic closure of F. An algebraic closure of F is unique up to isomorphism.

THEOREM (FUNDAMENTAL THEOREM OF ALGEBRA)

The field \mathbb{C} is algebraically closed.

COROLLARY

The field \mathbb{C} contains an algebraic closure for any of it s subfields. In particular, $\overline{\mathbb{Q}}$, the collection of complex numbers algebraic over \mathbb{Q} , is an algebraic closure of \mathbb{Q} .

< **₩** ► < **⇒** ►