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A polynomial p(x) € F[x] is called separable if it has no multiple
roots. A polynomial which is not separable is called inseparable.
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DEFINITION

A polynomial p(x) € F[x] is called separable if it has no multiple
roots. A polynomial which is not separable is called inseparable.

EXAMPLE

| A

©® The polynomial x> — 2 is separable over Q. The polynomial
(x? — 2)? is inseparable over Q.

® The polynomial x> — t is inseparable over the field F»(t) (the
rational functions of t over F5).
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DEFINITION

A polynomial p(x) € F[x] is called separable if it has no multiple
roots. A polynomial which is not separable is called inseparable.

v
EXAMPLE

©® The polynomial x> — 2 is separable over Q. The polynomial
(x? —2)2 is inseparable over Q.

® The polynomial x> — t is inseparable over the field F»(t) (the
rational functions of t over F5).

V.
DEFINITION

The derivative of the polynomial f(x) = >"7_, akx” is defined to
be

n
D)) = Z kayxk=1.
k=1
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PROPOSITION

The polynomial f(x) has a multiple root « if and only if cv is also a
root of Dy f(x). In particular, f(x) is separable if and only if it is
relatively prime to its derivative.
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PROPOSITION

The polynomial f(x) has a multiple root « if and only if cv is also a
root of Dy f(x). In particular, f(x) is separable if and only if it is
relatively prime to its derivative.

| A

EXAMPLE
@ (xP" — x) over F,, has derivative -1. Thus it is separable.

® If p|n then over [, the polynomial x” — 1 has multiple roots.

v
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PROPOSITION

The polynomial f(x) has a multiple root « if and only if cv is also a
root of Dyf(x). In particular, f(x) is separable if and only if it is
relatively prime to its derivative.

V.
EXAMPLE

@ (xP" — x) over F,, has derivative -1. Thus it is separable.

® If p|n then over [, the polynomial x” — 1 has multiple roots.

COROLLARY

Every irreducible polynomial over a field of characteristic 0 is
separable. A polynomial over such a field is separable if and only if
it is the product of distinct irreducible polynomials.

v
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PROPOSITION

Let F be a field of characteristic p. Then for any a, b € F,
(a+ b)P = aP + bP, (ab)P = aPbP,

that is the map ¢(a) = aP is an injective field homomorphism
F—F.
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PROPOSITION

Let F be a field of characteristic p. Then for any a, b € F,
(a+ b)P = aP + bP, (ab)P = aPbP,

that is the map ¢(a) = aP is an injective field homomorphism
F — F.

The map in the previous proposition is called the
Frobenius endomorphism of F.
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PROPOSITION

Let F be a field of characteristic p. Then for any a, b € F,

(a+ b)P = aP + bP, (ab)P = aPbP,

that is the map ¢(a) = aP is an injective field homomorphism
F — F.

DEFINITION

The map in the previous proposition is called the
Frobenius endomorphism of F.

COROLLARY

Suppose that F is a finite field of characteristic p. Then every
element of F is a pt" power in F.
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PROPOSITION

Every irreducible polynomial over a finite field F is separable. A
polynomial in F[x] is separable if and only if it is the product of
irreducible polynomials in F[x].

DEFINITION
A field K of characteristic p is called perfect if every element of K

is a pt" power in K.

| A

EXAMPLE

There is (up to ismomophism one) field of size p” for any prime p
and n € N.

A\
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PROPOSITION

Let p(x) be an irreducible polynomial over a field F of
characteristic p. then there is a unique integer k > 0 and a unique
irreducible separable polynomial psep(x) € F[x] such that

k

p(x) = Psep(Xp 2
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PROPOSITION

Let p(x) be an irreducible polynomial over a field F of
characteristic p. then there is a unique integer k > 0 and a unique
irreducible separable polynomial psep(x) € F[x] such that

k

p(X) = Psep(xlJ )

Let p(x) be an irreducible polynomial over a field F of
characteristic p. The degree of psep(x) is called the
separable degree of p(x), denoted deg.p(x). The integer p* is
called the inseparable degree of p(x), denoted deg;p(x).
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PROPOSITION

Let p(x) be an irreducible polynomial over a field F of
characteristic p. then there is a unique integer k > 0 and a unique
irreducible separable polynomial psep(x) € F[x] such that

k

p(X) = Psep(Xp )

DEFINITION

Let p(x) be an irreducible polynomial over a field F of
characteristic p. The degree of psep(x) is called the

separable degree of p(x), denoted deg.p(x). The integer p* is
called the inseparable degree of p(x), denoted deg;p(x).

| A

DEFINITION

K /F is separable if every a € K is the root of a separable
polynomial in F[x] (or equivalently, Voo € K, mFr (x) is separable.
Any field which is not separable is said to be inseparable.
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COROLLARY

Every finite extension of a perfect field is separable. In particular,
every extension of Q or any finite field is separable.
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