SEPARABLE AND INSEPARABLE EXTENSIONS

Kevin James

DEFINITION

A polynomial $p(x) \in F[x]$ is called <u>separable</u> if it has no multiple roots. A polynomial which is not separable is called <u>inseparable</u>.

DEFINITION

A polynomial $p(x) \in F[x]$ is called <u>separable</u> if it has no multiple roots. A polynomial which is not separable is called <u>inseparable</u>.

EXAMPLE

- **1** The polynomial $x^2 2$ is separable over \mathbb{Q} . The polynomial $(x^2 2)^2$ is inseparable over \mathbb{Q} .
- 2 The polynomial $x^2 t$ is inseparable over the field $\mathbb{F}_2(t)$ (the rational functions of t over \mathbb{F}_2).

DEFINITION

A polynomial $p(x) \in F[x]$ is called <u>separable</u> if it has no multiple roots. A polynomial which is not separable is called inseparable.

EXAMPLE

- **1** The polynomial $x^2 2$ is separable over \mathbb{Q} . The polynomial $(x^2 2)^2$ is inseparable over \mathbb{Q} .
- 2 The polynomial $x^2 t$ is inseparable over the field $\mathbb{F}_2(t)$ (the rational functions of t over \mathbb{F}_2).

Definition

The <u>derivative</u> of the polynomial $f(x) = \sum_{k=0}^{n} a_k x^k$ is defined to be

$$D_X f(x) = \sum_{k=1}^n k a_k x^{k-1}.$$

The polynomial f(x) has a multiple root α if and only if α is also a root of $D_x f(x)$. In particular, f(x) is separable if and only if it is relatively prime to its derivative.

The polynomial f(x) has a multiple root α if and only if α is also a root of $D_x f(x)$. In particular, f(x) is separable if and only if it is relatively prime to its derivative.

EXAMPLE

- $(x^{p^n} x)$ over \mathbb{F}_p has derivative -1. Thus it is separable.
- 2 If p|n then over \mathbb{F}_p , the polynomial x^n-1 has multiple roots.

PROPOSITION

The polynomial f(x) has a multiple root α if and only if α is also a root of $D_x f(x)$. In particular, f(x) is separable if and only if it is relatively prime to its derivative.

EXAMPLE

- $(x^{p^n} x)$ over \mathbb{F}_p has derivative -1. Thus it is separable.
- 2 If p|n then over \mathbb{F}_p , the polynomial x^n-1 has multiple roots.

Corollary

Every irreducible polynomial over a field of characteristic 0 is separable. A polynomial over such a field is separable if and only if it is the product of distinct irreducible polynomials.

Let F be a field of characteristic p. Then for any $a,b\in F$,

$$(a+b)^p = a^p + b^p, \qquad (ab)^p = a^p b^p,$$

that is the map $\phi(a) = a^p$ is an injective field homomorphism $F \to F$.

Let F be a field of characteristic p. Then for any $a, b \in F$,

$$(a+b)^p = a^p + b^p, \qquad (ab)^p = a^p b^p,$$

that is the map $\phi(a) = a^p$ is an injective field homomorphism $F \to F$.

DEFINITION

The map in the previous proposition is called the Frobenius endomorphism of F.

Let F be a field of characteristic p. Then for any $a, b \in F$,

$$(a+b)^p = a^p + b^p,$$
 $(ab)^p = a^p b^p,$

that is the map $\phi(a) = a^p$ is an injective field homomorphism $F \to F$.

DEFINITION

The map in the previous proposition is called the Frobenius endomorphism of F.

COROLLARY

Suppose that F is a finite field of characteristic p. Then every element of F is a p^{th} power in F.

Every irreducible polynomial over a finite field F is separable. A polynomial in F[x] is separable if and only if it is the product of irreducible polynomials in F[x].

DEFINITION

A field K of characteristic p is called <u>perfect</u> if every element of K is a p^{th} power in K.

EXAMPLE

There is (up to ismomophism one) field of size p^n for any prime p and $n \in \mathbb{N}$.

Let p(x) be an irreducible polynomial over a field F of characteristic p. then there is a unique integer $k \geq 0$ and a unique irreducible separable polynomial $p_{sep}(x) \in F[x]$ such that

$$p(x) = p_{sep}(x^{p^k}).$$

Let p(x) be an irreducible polynomial over a field F of characteristic p. then there is a unique integer $k \geq 0$ and a unique irreducible separable polynomial $p_{sep}(x) \in F[x]$ such that

$$p(x) = p_{sep}(x^{p^k}).$$

DEFINITION

Let p(x) be an irreducible polynomial over a field F of characteristic p. The degree of $p_{\text{sep}}(x)$ is called the separable degree of p(x), denoted $\deg_s p(x)$. The integer p^k is called the inseparable degree of p(x), denoted $\deg_i p(x)$.

PROPOSITION

Let p(x) be an irreducible polynomial over a field F of characteristic p. then there is a unique integer $k \geq 0$ and a unique irreducible separable polynomial $p_{sep}(x) \in F[x]$ such that

$$p(x) = p_{sep}(x^{p^k}).$$

DEFINITION

Let p(x) be an irreducible polynomial over a field F of characteristic p. The degree of $p_{\text{sep}}(x)$ is called the separable degree of p(x), denoted $\deg_s p(x)$. The integer p^k is called the inseparable degree of p(x), denoted $\deg_i p(x)$.

DEFINITION

K/F is separable if every $\alpha \in K$ is the root of a separable polynomial in F[x] (or equivalently, $\forall \alpha \in K$, $m_{F,\alpha}(x)$ is separable. Any field which is not separable is said to be inseparable.

COROLLARY

Every finite extension of a perfect field is separable. In particular, every extension of $\mathbb Q$ or any finite field is separable.