The Fundamental Theorem of Galois Theory

Kevin James

Kevin James The Fundamental Theorem of Galois Theory

DEFINITION

A (linear) character of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.

DEFINITION

The characters $\chi_1, \chi_2, \ldots, \chi_n$ of *G* are said to be linearly independent over *L* if they are linearly independent as functions on *G*.

Theorem (Linear Independence of Characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct characters of G with values in L then they are linearly independent over L.

COROLLARY

If $\sigma_1, \sigma_2, \ldots, \sigma_n$ are distinct embeddings of a field K into a field L, then they are linearly independent as functions on K. In particular, distinct automorphisms of a field K are linearly independent as functions on K.

THEOREM

Let $G = \{\sigma_1 = 1, \sigma_2, ..., \sigma_n\}$ be a subgroup of automorphisms of a field K and let F be the fixed field. Then,

$$[K:F]=n=|G|.$$

COROLLARY

Let K/F be any finite extension. Then

 $|\operatorname{Aut}(K/F)| \leq [K:F]$

with equality if and only if F is the fixed field of Aut(K/F). (-i.e. K/F is Galois if and only if F is the fixed field of Aut(K/F)).

COROLLARY

Let G be a finite subgroup of automorphisms of a field K and let F be the fixed field. Then every automorphism of K fixing F is contained in G, (-i.e. Aut(K/F) = G), so that K/F is Galois with Galois group G.

COROLLARY

If $G_1 \neq G_2$, are distinct finite subgroups of automorphisms of a field K then their fixed fields are also distinct.

Theorem

The extension K/F is Galois if and only if K is the splitting field of some separable polynomial over F. Furthermore, if this is the case then every irreducible polynomial with coefficients in F which has a root in K is separable and has all its roots in K (so in particular K/F is a separable extension).

DEFINITION

Let K/F be a Galois extension. If $\alpha \in K$ the elements $\sigma(\alpha)$ for $\sigma \in \operatorname{Gal}(K/F)$ are called the conjugates (or Galois conjugates) of α over F. If E is a subfield of \overline{K} containing \overline{F} , the field $\sigma(E)$ is called the conjugate field of E over F.

Note

We now have four characterizations of Galois extensions K/F.

- 1 Splitting fields of separable polynomials over *F*.
- Pields where F is precisely the set of elements fixed by Aut(K/F)
- **3** Fields with $[K : F] = |\operatorname{Aut}(K/F)|$
- **4** Finite, normal and separable extensions.

THEOREM (FUNDAMENTAL THEOREM OF GALOIS THEORY)

Let K/F be a Galois extension and set G = Gal(K/F). Then there is a bijection

$$\{F \subseteq E \subseteq K \mid E \text{ is a field}\} \longleftrightarrow \{H \leq G\}$$

given by the correspondences

$$E \mapsto \{ \sigma \in G \mid \sigma \text{ fixes } E \text{ pointwise} \},$$

and

$$H \mapsto \{ \alpha \in K \mid \sigma(\alpha) = \alpha, \forall \alpha \in H \}$$

which are inverse to each other. Under this correspondence

- If E₁, E₂ ⊆ K correspond to H₁, H₂ ≤ G then E₁ ⊆ E₂ if and only if H₁ ≥ H₂.
- **2** [K : E] = |H| and [E : F] = [G : H].
- **8** K/E is always Galois, with Galois group Gal(K/E) = H.

THEOREM (FUNDAMENTAL THEOREM OF GALOIS THEORY (CONTINUED))

- If E₁, E₂ ⊆ K correspond to H₁, H₂ ≤ G then E₁ ⊆ E₂ if and only if H₁ ≥ H₂.
- **2** [K : E] = |H| and [E : F] = [G : H].
- **8** K/E is always Galois, with Galois group Gal(K/E) = H.
- **④** *E* is Galois over *F* if and only if $H ext{ } ext{ } G$ and if this is the case then $\operatorname{Gal}(E/F) \cong G/H$.
- If E₁, E₂ ⊆ K correspond to H₁, H₂ ≤ G, then E₁ ∩ E₂ corresponds to < H₁, H₂ > and E₁E₂ corresponds to H₁ ∩ H₂.