THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Kevin James

A (linear) character of a group G with values in a field L is a homomorphism $\chi:G\to L^\times$.

A (linear) character of a group G with values in a field L is a homomorphism $\chi:G\to L^\times$.

DEFINITION

The characters $\chi_1, \chi_2, \dots, \chi_n$ of G are said to be linearly independent over L if they are linearly independent as functions on G.

A (linear) character of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.

DEFINITION

The characters $\chi_1, \chi_2, \dots, \chi_n$ of G are said to be linearly independent over L if they are linearly independent as functions on G.

Theorem (Linear Independence of Characters)

If $\chi_1, \chi_2, \dots, \chi_n$ are distinct characters of G with values in L then they are linearly independent over L.

A (linear) character of a group G with values in a field L is a homomorphism $\chi:G\to L^\times$.

DEFINITION

The characters $\chi_1, \chi_2, \dots, \chi_n$ of G are said to be linearly independent over L if they are linearly independent as functions on G.

THEOREM (LINEAR INDEPENDENCE OF CHARACTERS)

If $\chi_1, \chi_2, \dots, \chi_n$ are distinct characters of G with values in L then they are linearly independent over L.

COROLLARY

If $\sigma_1, \sigma_2, \ldots, \sigma_n$ are distinct embeddings of a field K into a field L, then they are linearly independent as functions on K. In particular, distinct automorphisms of a field K are linearly independent as functions on K.

THEOREM

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of automorphisms of a field K and let F be the fixed field. Then,

$$[K:F]=n=|G|.$$

THEOREM

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of automorphisms of a field K and let F be the fixed field. Then,

$$[K:F]=n=|G|.$$

COROLLARY

Let K/F be any finite extension. Then

$$|\operatorname{Aut}(K/F)| \leq [K:F]$$

with equality if and only if F is the fixed field of Aut(K/F). (-i.e. K/F is Galois if and only if F is the fixed field of Aut(K/F)).

COROLLARY

Let G be a finite subgroup of automorphisms of a field K and let F be the fixed field. Then every automorphism of K fixing F is contained in G, (-i.e. $\operatorname{Aut}(K/F) = G$), so that K/F is Galois with Galois group G.

COROLLARY

Let G be a finite subgroup of automorphisms of a field K and let F be the fixed field. Then every automorphism of K fixing F is contained in G, (-i.e. $\operatorname{Aut}(K/F)=G$), so that K/F is Galois with Galois group G.

COROLLARY

If $G_1 \neq G_2$, are distinct finite subgroups of automorphisms of a field K then their fixed fields are also distinct.

COROLLARY

Let G be a finite subgroup of automorphisms of a field K and let F be the fixed field. Then every automorphism of K fixing F is contained in G, (-i.e. $\operatorname{Aut}(K/F)=G$), so that K/F is Galois with Galois group G.

COROLLARY

If $G_1 \neq G_2$, are distinct finite subgroups of automorphisms of a field K then their fixed fields are also distinct.

THEOREM

The extension K/F is Galois if and only if K is the splitting field of some separable polynomial over F. Furthermore, if this is the case then every irreducible polynomial with coefficients in F which has a root in K is separable and has all its roots in K (so in particular K/F is a separable extension).

Let K/F be a Galois extension. If $\alpha \in K$ the elements $\sigma(\alpha)$ for $\sigma \in \operatorname{Gal}(K/F)$ are called the <u>conjugates</u> (or <u>Galois conjugates</u>) of α over F. If E is a subfield of K containing F, the field $\sigma(E)$ is called the conjugate field of E over F.

Let K/F be a Galois extension. If $\alpha \in K$ the elements $\sigma(\alpha)$ for $\sigma \in \operatorname{Gal}(K/F)$ are called the <u>conjugates</u> (or <u>Galois conjugates</u>) of α over F. If E is a subfield of K containing F, the field $\sigma(E)$ is called the conjugate field of E over F.

Note

We now have four characterizations of Galois extensions K/F.

- \bigcirc Splitting fields of separable polynomials over F.
- 2 Fields where F is precisely the set of elements fixed by Aut(K/F)
- 3 Fields with $[K:F] = |\operatorname{Aut}(K/F)|$
- 4 Finite, normal and separable extensions.

THEOREM (FUNDAMENTAL THEOREM OF GALOIS THEORY)

Let K/F be a Galois extension and set $G = \operatorname{Gal}(K/F)$. Then there is a bijection

$$\{F \subseteq E \subseteq K \mid E \text{ is a field}\} \longleftrightarrow \{H \le G\}$$

given by the correspondences

$$E \mapsto \{\sigma \in G \mid \sigma \text{ fixes } E \text{ pointwise}\},$$

and

$$H \mapsto \{\alpha \in K \mid \sigma(\alpha) = \alpha, \forall \alpha \in H\}$$

which are inverse to each other. Under this correspondence

- **1** If $E_1, E_2 \subseteq K$ correspond to $H_1, H_2 \leq G$ then $E_1 \subseteq E_2$ if and only if $H_1 \geq H_2$.
- ② [K : E] = |H| and [E : F] = [G : H].
- **3** K/E is always Galois, with Galois group Gal(K/E) = H.
- **4**

THEOREM (FUNDAMENTAL THEOREM OF GALOIS THEORY (CONTINUED))

- **1** If $E_1, E_2 \subseteq K$ correspond to $H_1, H_2 \leq G$ then $E_1 \subseteq E_2$ if and only if $H_1 \geq H_2$.
- ② [K : E] = |H| and [E : F] = [G : H].
- **3** K/E is always Galois, with Galois group Gal(K/E) = H.
- **①** E is Galois over F if and only if H ⊆ G and if this is the case then Gal(E/F) ⊆ G/H.
- $\textbf{ 1f } E_1, E_2 \subseteq \textit{K correspond to } H_1, H_2 \leq \textit{G, then } E_1 \cap E_2 \\ \textit{corresponds to } < H_1, H_2 > \textit{and } E_1E_2 \textit{ corresponds to } H_1 \cap H_2.$