GALOIS THEORY AND FINITE FIELDS

Kevin James

PROPOSITION

Any finite field is isomorphic to \mathbb{F}_{p^n} for some prime p and $n \in \mathbb{N}$, where \mathbb{F}_{p^n} is the splitting field for $x^{p^n} - 1$ over \mathbb{F}_p . The extension \mathbb{F}_{p^n}/F_p is Galois with $\operatorname{Gal}(\mathbb{F}_{p^n}/F_p) = \langle \sigma_p \rangle \cong \mathbb{Z}/n\mathbb{Z}$, where σ_p denotes the Frobenius map. The subfields of \mathbb{F}_{p^n} are all Galois over \mathbb{F}_p and are in 1-1 correspondence with the divisors d of n. More precisely they are the subfields \mathbb{F}_{p^d} , the fixed fields of σ_p^d .

COROLLARY

The irreducible polynomial $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime p.

PROPOSITION

The finite field \mathbb{F}_{p^n} is simple. In particular, there exists an irreducible polynomial of degree n over \mathbb{F}_p for every $n \in \mathbb{N}$.

PROPOSITION

The polynomial $x^{p^n} - x$ is precisely the product of all the distince irreducible polynomials in $\mathbb{F}_p[x]$ of degree d where d|n.