Subgroups

Kevin James

DEFINITION

Suppose that (G, \cdot) is a group and the group axioms are satisfied when \cdot is restricted to $H \subseteq G$. Then we say that H is a <u>subgroup</u> of G and write $H \subseteq G$.

Equivalently, we have

Proposition

If (G, \cdot) is a group and $H \subseteq G$. Then $H \le G$ if the following are true.

- $\mathbf{0} H \neq \emptyset.$
- **2** $h_1 \cdot h_2 \in H$, $\forall h_1, h_2 \in H$.
- **3** h^{-1} ∈ H, $\forall h$ ∈ H.

EXAMPLE

- **1** For any group G, $\{e\}$, $G \leq G$.
- **8** $\{\pm 1, \pm i\} \leq Q_8$

PROPOSITION

Suppose that G is a group and that $\emptyset \neq H \subseteq G$. Then $H \leq G$ if and only if $h_1h_2^{-1} \in H$, $\forall h_1, h_2 \in H$.