SUBGROUPS

Kevin James

æ

DEFINITION

Suppose that (G, \cdot) is a group and the group axioms are satisfied when \cdot is restricted to $H \subseteq G$. Then we say that H is a subgroup of G and write $H \leq G$.

Equivalently, we have

PROPOSITION

If (G, \cdot) is a group and $H \subseteq G$. Then $H \leq G$ if the following are true.

イロン イ部ン イヨン イヨン 三日

EXAMPLE

1 For any group
$$G$$
, $\{e\}$, $G \le G$.
2 $\{1, r, r^2, \dots, r^{n-1}\} \le D_{2n}$.
3 $\{\pm 1, \pm i\} \le Q_8$

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● ● ●

EXAMPLE

1 For any group
$$G$$
, $\{e\}, G \le G$.
2 $\{1, r, r^2, \dots, r^{n-1}\} \le D_{2n}$.
3 $\{\pm 1, \pm i\} \le Q_8$

PROPOSITION

Suppose that G is a group and that $\emptyset \neq H \subseteq G$. Then $H \leq G$ if and only if $h_1h_2^{-1} \in H$, $\forall h_1, h_2 \in H$.