CENTRALIZERS, NORMALIZERS, STABILIZERS AND KERNELS

Kevin James

DEFINITION

Suppose that G is a group and that $\emptyset \neq A \subseteq G$. We define the centralizer of A in G as

$$C_G(A) = \{g \in G \mid gag^{-1} = a, \forall a \in A\}.$$

Note

 $C_G(A)$ is the set of elements of G which commute with each element of A.

Proposition

Given a group G and $\emptyset \neq A \subseteq G$, $C_G(A) \leq G$.

DEFINITION

We define the <u>center</u> of a group G as $Z(G) = C_G(G)$ and note that it is the set of elements of G which commute with all other elements.

Definition

Given a group G and $\emptyset \neq A \subseteq G$, we define for $g \in G$, $gAg^{-1} = \{gag^{-1} \mid a \in A\}$. Further, we define the <u>normalizer</u> of A in G to be $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$.

Note

Given a group G and $\emptyset \neq A \subseteq G$ note that $Z(G) \leq C_G(A) \leq N_G(A) \leq G$.

EXAMPLE

Take $A = \{1, r, r^2, r^3\} \le D_8$. Prove that

- 1 $C_{D_8}(A) = A$,
- 2 $N_{D_8}(A) = D_8$, and
- 3 $Z(D_8) = \{1, r^2\}.$

DEFINITION

Suppose that S is a nonempty set and that G is a group acting on S.

- 1 For $s \in S$, we define the <u>stabilizer</u> of s to be $G_s = \{g \in G \mid g \cdot s = s\}$, and
- 2 we define the <u>kernel</u> of the action to be $\{g \in G \mid g \cdot s = s, \forall s \in S\}.$

FACT

Suppose that S is a nonempty set and that G is a group acting on S. For any $s \in S$, $G_s \leq G$. Also the kernel of the action is a subgroup of G.

EXAMPLE

Let $G = D_8$ and let $S = \{1, 2, 3, 4\}$. For any $s \in S$, $G_s = \{1, t\}$ where t denotes the reflection about the diagonal passing through s.

CENTRALIZERS, NORMALIZERS AND THE CENTER IN TERMS OF ACTIONS

Remark

- Let $S=2^G$ (the power set of G) and let G act on S by conjugation (-i.e. $g \cdot s = gsg^{-1}$. If $A=s \in S$ then $N_G(A)=G_s$.
- 2 Let $N_G(A)$ act on S=A by conjugation. Then $C_G(A)$ is the kernel of the action.
- **3** Let G act on S = G by conjugation, then the kernel of the action is Z(G).