CYCLIC GROUPS AND SUBGROUPS

Kevin James

DEFINITION

A group H is cyclic if it can be generated by one element, that is if $H = \{x^n \mid \overline{n \in \mathbb{Z}}\} = < x >$.

Note

A cyclic group typically has more than one generator.

- **1** If $H = \langle x \rangle$, then $H = \langle x^{-1} \rangle$ also.
- 2 $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$. There are no other generators of \mathbb{Z} .
- **3** The generators of the cyclic group $(\mathbb{Z}/11\mathbb{Z})^*$ are 2,6,7 and 8.

Proposition

Suppose that $H = \langle x \rangle$. Then |H| = |x|. More precisely,

- **1** If $|H| = n < \infty$ then $x^n = 1$ and $1, x, x^2, \dots, x^{n-1}$ are distinct.
- ② If $|H| = \infty$, then $x^n \neq 1$, $\forall n \in \mathbb{Z}$ and for $a, b \in \mathbb{Z}$, $x^a = x^b \Rightarrow a = b$.

PROPOSITION

Suppose that G is a group and that $x \in G$. If $x^m = 1$ and $x^n = 1$ then $x^{(m,n)} = 1$ as well. In particular, if $x^m = 1$ for some $m \in \mathbb{Z}$, then |x| divides m.

THEOREM

Any two cyclic groups of the same order are isomorphic. More precisely,

- **1** If $0 \le n < \infty$ and if < x > and < y > are cyclic groups of order n, then the map $\phi :< x > \rightarrow < y >$ defined by $\phi(x^k) = y^k$ is a well defined isomorphism.
- **2** If < x > is an infinite cyclic group, then the map $\phi : \mathbb{Z} \to < x >$ defined by $\phi(k) = x^k$ is a well defined isomorphism.

Theorem

Suppose that G is a group, $x \in G$ and that $0 \neq a \in \mathbb{Z}$.

- 1 If $|x| = \infty$, then $|x^a| = \infty$.
- **2** If |x| = n then $|x^a| = \frac{n}{(a,n)}$.

PROPOSITION

Suppose that $H = \langle x \rangle$.

- 1 If $|x| = \infty$, then $H = \langle x^a \rangle$ if and only if $a = \pm 1$.
- 2 If |x| = n, then $H = \langle x^a \rangle$ if and only if (a, n) = 1. In particular, the number of generators of H is $\phi(n)$.

THEOREM

Let $H = \langle x \rangle$ be a cyclic group.

- **1** Every subgroup of H is cyclic. More precisely, if $K \le H$ then $K = \langle x^d \rangle$ where d is the smallest positive integer for which $x^d \in K$.
- 2 If $|H| = \infty$, then we have $\langle x^m \rangle = \langle x^{-m} \rangle$ and for $0 \le a < b < \infty$, $\langle x^a \rangle \neq \langle x^b \rangle$. Thus the non-trivial subgroups of H are in 1-1 correspondence with the positive integers $1, 2, \ldots$
- **3** If $H = n < \infty$, then for each $a \mid n$, letting n = ak we have $| < x^k > | = a$. Further, $< x^m > = < x^{(n,m)} >$. Thus the subgroups of H are in 1-1 correspondence with the positive divisors of n.