CYCLIC GROUPS AND SUBGROUPS

Kevin James

Kevin James Cyclic groups and subgroups

・ロン ・回 と ・ 回 と ・ 回 と

æ

DEFINITION

A group *H* is cyclic if it can be generated by one element, that is if $H = \{x^n \mid \overline{n \in \mathbb{Z}}\} = <x >$.

(ロ) (同) (E) (E) (E)

DEFINITION

A group *H* is cyclic if it can be generated by one element, that is if $H = \{x^n \mid \overline{n \in \mathbb{Z}}\} = \langle x \rangle$.

Note

A cyclic group typically has more than one generator.

1 If
$$H = \langle x \rangle$$
, then $H = \langle x^{-1} \rangle$ also.

2 $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$. There are no other generators of \mathbb{Z} .

3 The generators of the cyclic group $(\mathbb{Z}/11\mathbb{Z})^*$ are 2,6,7 and 8.

イロン イ部ン イヨン イヨン 三日

PROPOSITION

Suppose that $H = \langle x \rangle$. Then |H| = |x|. More precisely,

- 1 If $|H| = n < \infty$ then $x^n = 1$ and $1, x, x^2, \dots, x^{n-1}$ are distinct.
- ② If $|H| = \infty$, then $x^n \neq 1$, $\forall n \in \mathbb{Z}$ and for $a, b \in \mathbb{Z}$, $x^a = x^b \Rightarrow a = b$.

PROPOSITION

Suppose that $H = \langle x \rangle$. Then |H| = |x|. More precisely,

• If $|H| = n < \infty$ then $x^n = 1$ and $1, x, x^2, \dots, x^{n-1}$ are distinct.

2 If
$$|H| = \infty$$
, then $x^n \neq 1$, $\forall n \in \mathbb{Z}$ and for $a, b \in \mathbb{Z}$, $x^a = x^b \Rightarrow a = b$.

PROPOSITION

Suppose that G is a group and that $x \in G$. If $x^m = 1$ and $x^n = 1$ then $x^{(m,n)} = 1$ as well. In particular, if $x^m = 1$ for some $m \in \mathbb{Z}$, then |x| divides m.

イロン イ部ン イヨン イヨン 三日

Any two cyclic groups of the same order are isomorphic. More precisely,

- If 0 ≤ n < ∞ and if < x > and < y > are cyclic groups of order n, then the map φ :< x >→< y > defined by φ(x^k) = y^k is a well defined isomorphism.
- If < x > is an infinite cyclic group, then the map φ : Z →< x > defined by φ(k) = x^k is a well defined isomorphism.

< 4 P→

★ 문 ► ★ 문 ►

Suppose that G is a group, $x \in G$ and that $0 \neq a \in \mathbb{Z}$.

・ロト ・回ト ・ヨト ・ヨト

Э

Suppose that G is a group, $x \in G$ and that $0 \neq a \in \mathbb{Z}$.

1 If
$$|x| = \infty$$
, then $|x^a| = \infty$.

2) If
$$|x| = n$$
 then $|x^a| = \frac{n}{(a,n)}$.

Proposition

Suppose that $H = \langle x \rangle$.

1) If
$$|x| = \infty$$
, then $H = \langle x^a \rangle$ if and only if $a = \pm 1$.

・ロン ・回 と ・ 回 と ・ 回 と

Э

Let $H = \langle x \rangle$ be a cyclic group.

- **1** Every subgroup of H is cyclic. More precisely, if $K \le H$ then $K = \langle x^d \rangle$ where d is the smallest positive integer for which $x^d \in K$.
- If |H| = ∞, then we have < x^m >=< x^{-m} > and for 0 ≤ a < b < ∞, < x^a >≠< x^b >. Thus the non-trivial subgroups of H are in 1-1 correspondence with the positive integers 1, 2,
- If H = n < ∞, then for each a|n, letting n = ak we have | < x^k > | = a. Further, < x^m >=< x^(n,m) >. Thus the subgroups of H are in 1-1 correspondence with the positive divisors of n.

<ロ> (四) (四) (三) (三) (三)