QUOTIENT GROUPS AND HOMOMORPHISMS: DEFINITIONS AND EXAMPLES

Kevin James

DEFINITION

If $\phi: G \to H$ is a homomorphism of groups, the <u>kernel</u> of ϕ is the set

$$\ker(\phi)\{g\in G \mid \phi(g)=1_H\}.$$

Proposition

Suppose that $\phi: G \to H$ is a group homomorphism.

- $0 \phi(1_G) = 1_H.$
- **2** $\phi(g^{-1} = (\phi(g))^{-1}, \forall g \in G.$
- 4 $\ker(\phi) \leq G$.
- \bullet im $(\phi) \leq H$.

DEFINITION

Suppose that $\phi: G \to H$ is a homomorphism of groups. For $h \in H$, we define the <u>fiber</u> above h to be $X_h = \phi^{-1}(h)$.

PROPOSITION

Suppose that $\phi: G \to H$ is a homomorphism of groups and let $K = \ker(\phi)$, we denote by G/K the set of all fibers. The set G/K is a group with operation defined by $X_aX_b = X_{ab}$. This group is called the quotient group of G by K

Proposition

Suppose that $\phi: G \to H$ is a homomorphism of groups and let $K = \ker(\phi)$. Let $X \in G/K$. Then,

- **1** For any $u \in X$, $X = \{uk \mid k \in K\} := uK$.
- **2** For any $u \in X$, $X = \{ku \mid k \in K\} := Ku$.

DEFINITION

For any $N \leq G$ and $g \in G$ let

$$gN = \{gn \mid n \in N\}$$
 $Ng = \{ng \mid n \in N\}.$

called respectively a <u>left coset of N</u> and a right coset of N.

THEOREM

Let G be a group and let $K \leq G$ be the kernel of some homomorphism from G to some other group. The set of left cosets of K with operation defined by $(uK) \cdot (wK) = uwK$ forms a group G/K. The same is true if we replace "left coset" by "right coset."

Proposition

Let $N \leq G$. The set of left cosets of N in G form a partition of G. Furthermore, for all $u, w \in G$, uN = wN if and only if $w^{-1}u \in N$.

Proposition

Let $N \leq G$.

- **1** The operation defined on the set of left cosets of N by $uN \cdot wN = uwN$ is well defined if and only if $gNg^{-1} = N$, $\forall g \in G$.
- 2 In the case that the above operation is well defined, it makes G/N the set of left cosets of N into a group.

DEFINITION

Suppose that $N \leq G$. We say that g <u>normalizes</u> N if $gNg^{-1} = N$. The subgroup N is said to be <u>normal</u> if every element of G normalizes N. If N is a normal subgroup of G, we write $N \subseteq G$.

THEOREM

Let $N \leq G$. The following are equivalent.

- $\mathbf{1}$ $N \leq G$.
- $N_G(N) = G.$
- 3 gN = Ng, $\forall g \in G$.
- ① The operation $(uN) \cdot (wN) = uwN$ is a well defined and makes G/N into a group.
- **6** gNg^{-1} ⊆ N, $\forall g \in G$.

PROPOSITION

Suppose that $N \leq G$. Then, $N \subseteq G$ if and only if $N = \ker(\phi)$ for some homomorphism ϕ .

DEFINITION

Suppose that $N \subseteq G$. Then the homomorphism $\pi: G \to G/N$ given by $\pi(g) = gN$ (Check that this is indeed a homomorphism.) is called the natural projection of G onto G/N.

Note

The natural projection of G onto G/N gives a one to one correspondence between the subgroups of G/N and the subgroups H of G satisfying $N \leq H \leq G$.