QUOTIENT GROUPS AND HOMOMORPHISMS: DEFINITIONS AND EXAMPLES

Kevin James

Kevin James Quotient Groups and Homomorphisms: Definitions and Examp

・ 回 と ・ ヨ と ・ モ と …

2

If $\phi: {\cal G} \to {\cal H}$ is a homomorphism of groups, the $\underline{\rm kernel}$ of ϕ is the set

$$\ker(\phi)\{g\in G \mid \phi(g)=1_H\}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

If $\phi: {\it G} \rightarrow {\it H}$ is a homomorphism of groups, the $\underline{\rm kernel}$ of ϕ is the set

$$\ker(\phi)\{g\in G \mid \phi(g)=1_H\}.$$

PROPOSITION

Suppose that $\phi : G \rightarrow H$ is a group homomorphism.

1
$$\phi(1_G) = 1_H.$$

2 $\phi(g^{-1} = (\phi(g))^{-1}, \forall g \in G.$
3 $\phi(g^n) = \phi(g)^n, \forall g \in G.$
4 $\ker(\phi) \le G.$
5 $im(\phi) \le H.$

· < @ > < 글 > < 글 > · · 글

Suppose that $\phi : G \to H$ is a homomorphism of groups. For $h \in H$, we define the fiber above h to be $X_h = \phi^{-1}(h)$.

(本部) (本語) (本語) (語)

Definition

Suppose that $\phi : G \to H$ is a homomorphism of groups. For $h \in H$, we define the fiber above h to be $X_h = \phi^{-1}(h)$.

PROPOSITION

Suppose that ϕ : $G \to H$ is a homomorphism of groups and let $K = \ker(\phi)$, we denote by G/K the set of all fibers. The set G/K is a group with operation defined by $X_aX_b = X_{ab}$. This group is called the quotient group of G by K

イロト イポト イラト イラト 一日

Suppose that $\phi : G \to H$ is a homomorphism of groups and let $K = \ker(\phi)$. Let $X \in G/K$. Then,

- **1** For any $u \in X$, $X = \{uk \mid k \in K\} := uK$.
- **2** For any $u \in X$, $X = \{ku | k \in K\} := Ku$.

(本間) (本語) (本語) (語)

Suppose that $\phi : G \to H$ is a homomorphism of groups and let $K = \ker(\phi)$. Let $X \in G/K$. Then,

1 For any
$$u \in X$$
, $X = \{uk \mid k \in K\} := uK$.

2 For any
$$u \in X$$
, $X = \{ku \mid k \in K\} := Ku$.

DEFINITION

For any $N \leq G$ and $g \in G$ let

$$gN = \{gn \mid n \in N\}$$
 $Ng = \{ng \mid n \in N\}.$

called respectively a left coset of N and a right coset of N.

(ロ) (同) (E) (E) (E)

Let G be a group and let $K \leq G$ be the kernel of some homomorphism from G to some other group. The set of left cosets of K with operation defined by $(uK) \cdot (wK) = uwK$ forms a group G/K. The same is true if we replace "left coset" by "right coset."

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a group and let $K \leq G$ be the kernel of some homomorphism from G to some other group. The set of left cosets of K with operation defined by $(uK) \cdot (wK) = uwK$ forms a group G/K. The same is true if we replace "left coset" by "right coset."

PROPOSITION

Let $N \leq G$. The set of left cosets of N in G form a partition of G. Furthermore, for all $u, w \in G$, uN = wN if and only if $w^{-1}u \in N$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $N \leq G$.

- **1** The operation defined on the set of left cosets of N by $uN \cdot wN = uwN$ is well defined if and only if $gNg^{-1} = N$, $\forall g \in G$.
- In the case that the above operation is well defined, it makes G/N the set of left cosets of N into a group.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let $N \leq G$.

- **1** The operation defined on the set of left cosets of N by $uN \cdot wN = uwN$ is well defined if and only if $gNg^{-1} = N$, $\forall g \in G$.
- In the case that the above operation is well defined, it makes G/N the set of left cosets of N into a group.

Definition

Suppose that $N \leq G$. We say that g normalizes N if $gNg^{-1} = N$. The subgroup N is said to be normal if every element of G normalizes N. If N is a normal subgroup of G, we write $N \leq G$.

(日) (同) (E) (E) (E)

- Let $N \leq G$. The following are equivalent.
 - $1 N \trianglelefteq G.$
 - **2** $N_G(N) = G.$

 - The operation (uN) · (wN) = uwN is a well defined and makes G/N into a group.

$$\mathbf{6} \ \mathbf{gNg^{-1}} \subseteq \mathbf{N}, \ \forall \mathbf{g} \in \mathbf{G}.$$

(《圖》 《문》 《문》 - 문

- Let $N \leq G$. The following are equivalent.
 - $1 N \trianglelefteq G.$
 - **2** $N_G(N) = G.$
 - $3 gN = Ng, \forall g \in G.$
 - The operation (uN) · (wN) = uwN is a well defined and makes G/N into a group.

$$\mathbf{S} \ g \mathsf{N} g^{-1} \subseteq \mathsf{N}, \ \forall g \in \mathsf{G}.$$

PROPOSITION

Suppose that $N \leq G$. Then, $N \leq G$ if and only if $N = \text{ker}(\phi)$ for some homomorphism ϕ .

イロン イ部ン イヨン イヨン 三日

Suppose that $N \subseteq G$. Then the homomorphism $\pi : G \to G/N$ given by $\pi(g) = gN$ (Check that this is indeed a homomorphism.) is called the natural projection of G onto G/N.

(本部)) (本語)) (本語)) (語)

Suppose that $N \subseteq G$. Then the homomorphism $\pi : G \to G/N$ given by $\pi(g) = gN$ (Check that this is indeed a homomorphism.) is called the natural projection of G onto G/N.

Note

The natural projection of G onto G/N gives a one to one correspondence between the subgroups of G/N and the subgroups H of G satisfying $N \le H \le G$.

(日) (同) (E) (E) (E)