More on Cosets and Lagrange's Theorem

Kevin James

Kevin James

THEOREM (LAGRANGE'S THEOREM)

Suppose that G is a group and that $H \leq G$. Then |H| divides |G|. In fact, if we denote the number of cosets of H in G by [G:H] (also called the <u>index</u> of H in G), then we have |G| = [G:H]|H|.

COROLLARY

Suppose that G is a group and that $x \in G$. Then |x| divides |G|. In particular, $x^{|G|} = 1$ for all $x \in G$.

COROLLARY

If G is a group of prime order then G is cyclic.

Note

Note that if G is a group and $H \leq G$ with |H| = |G|/2, then $H \triangleleft G$.

DEFINITION

Suppose that $H, K \leq G$. Define

$$HK = \{hk \mid h \in H; k \in K\}.$$

Proposition

Suppose that $H, K \leq G$ where G is a finite group. Then,

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

PROPOSITION

Suppose that $H, K \leq G$. The set HK is a subgroup of G if and only if HK = KH.

COROLLARY

If $H, K \leq G$ and $H \leq N_G(K, then HK \leq G.$ In particular, if $K \leq G$, then $HK \leq G$ for all $H \leq G$.