More on Cosets and Lagrange's Theorem

Kevin James

Kevin James More on Cosets and Lagrange's Theorem

白 ト く ヨ ト く ヨ ト

æ

Suppose that G is a group and that $H \leq G$. Then |H| divides |G|. In fact, if we denote the number of cosets of H in G by [G : H](also called the <u>index</u> of H in G), then we have |G| = [G : H]|H|.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that G is a group and that $H \leq G$. Then |H| divides |G|. In fact, if we denote the number of cosets of H in G by [G : H](also called the <u>index</u> of H in G), then we have |G| = [G : H]|H|.

COROLLARY

Suppose that G is a group and that $x \in G$. Then |x| divides |G|. In particular, $x^{|G|} = 1$ for all $x \in G$.

・ロト ・回ト ・ヨト ・ヨト

Suppose that G is a group and that $H \leq G$. Then |H| divides |G|. In fact, if we denote the number of cosets of H in G by [G : H](also called the <u>index</u> of H in G), then we have |G| = [G : H]|H|.

COROLLARY

Suppose that G is a group and that $x \in G$. Then |x| divides |G|. In particular, $x^{|G|} = 1$ for all $x \in G$.

COROLLARY

If G is a group of prime order then G is cyclic.

・ロト ・回ト ・ヨト ・ヨト

Suppose that G is a group and that $H \leq G$. Then |H| divides |G|. In fact, if we denote the number of cosets of H in G by [G : H](also called the <u>index</u> of H in G), then we have |G| = [G : H]|H|.

COROLLARY

Suppose that G is a group and that $x \in G$. Then |x| divides |G|. In particular, $x^{|G|} = 1$ for all $x \in G$.

COROLLARY

If G is a group of prime order then G is cyclic.

Note

Note that if G is a group and $H \leq G$ with |H| = |G|/2, then $H \leq G$.

イロン イヨン イヨン イヨン

Suppose that $H, K \leq G$. Define

$$HK = \{hk \mid h \in H; k \in K\}.$$

æ

Suppose that $H, K \leq G$. Define

$$HK = \{hk \mid h \in H; k \in K\}.$$

PROPOSITION

Suppose that $H, K \leq G$ where G is a finite group. Then,

 $|HK| = \frac{|H||K|}{|H \cap K|}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Suppose that $H, K \leq G$. Define

$$HK = \{hk \mid h \in H; k \in K\}.$$

PROPOSITION

Suppose that $H, K \leq G$ where G is a finite group. Then,

 $|HK| = \frac{|H||K|}{|H \cap K|}.$

PROPOSITION

Suppose that $H, K \leq G$. The set HK is a subgroup of G if and only if HK = KH.

イロト イヨト イヨト イヨト

Suppose that $H, K \leq G$. Define

$$HK = \{hk \mid h \in H; k \in K\}.$$

PROPOSITION

Suppose that $H, K \leq G$ where G is a finite group. Then,

 $|HK| = \frac{|H||K|}{|H \cap K|}.$

PROPOSITION

Suppose that $H, K \leq G$. The set HK is a subgroup of G if and only if HK = KH.

COROLLARY

If $H, K \leq G$ and $H \leq N_G(K)$, then $HK \leq G$. In particular, if $K \leq G$, then $HK \leq G$ for all $H \leq G$.