THE ISOMORPHISM THEOREMS

Kevin James

Theorem (First Isomorphism Theorem)

Suppose that $\phi : G \to H$ is a homomorphism. Then ker $(\phi) \trianglelefteq G$ and $G / \text{ker}(\phi) \cong \phi(G)$.

COROLLARY

Let $\phi : G \to H$ be a homomorphism of groups. Then,

1
$$\phi$$
 is injective if and only if ker $(\phi) = \{1_G\}$.

2 $[G : \ker(\phi)] = |\phi(G)|.$

THEOREM (SECOND OR DIAMOND ISOMORPHISM THEOREM)

Suppose that $A, B \leq G$ with $A \leq N_G(B)$. Then, $AB \leq G$, $B \leq AB$, $A \cap B \leq A$ and $AB/B \cong A/(A \cap B)$.

THEOREM (THIRD ISOMORPHISM THEOREMS)

Let G be a group and let $H, K \trianglelefteq G$ with $H \le K$. Then $K/H \trianglelefteq G/H$ and

$(G/H)/(K/H) \cong G/K.$

THEOREM (FOURTH ISOMORPHISM THEOREM)

Let G be a group and let $N \leq G$. Then there is a bijection from the set of subgroups $A \leq G$ which contain N onto the set of subgroups $A/N \leq G/N$. In particular, every subgroup of G/N is of the form A/N for some $N \leq A \leq G$. This bijection has the following properties.

- **1** $A \leq B$ if and only if $A/N \leq B/N$,
- **2** if $A \le B$ then, [B : A] = [B/N : A/N],

$$3 < A, B > /N = < A/N, B/N >$$

- $(A \cap B) / N = A/N \cap B/N, and$
- **6** $A \leq G$ if and only if $A/N \leq G/N$.

Note

Suppose $N \subseteq G$ and that $\Phi : G \to H$ is a homomorphism then the map $\phi : G/N \to H$ is well-defined if and only if $N \leq \ker(\Phi)$. In this case, we say that the map Φ factors through N and that ϕ is the induced homomorphism on G/N.