Transpositions and the Alternating Group

Kevin James

DEFINITION

In S_n any 2-cycle is called a transposition.

Note

- Recall that every permutation can be written as a product of disjoint cycles.
- $(a_1,\ldots,a_m) = (a_1,a_m)(a_1,a_{m-1})(a_1,a_{m-2})\ldots(a_1,a_3)(a_1,a_2).$
- 8 Every permutation can be written as a product of transpositions.

DEFINITION

- $\bullet \Delta_n = \prod_{1 \leq i < j \leq n} (x_i x_j).$
- 2 For $\sigma \in S_n$, define $\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} x_{\sigma(j)})$.

Note

For all $\sigma \in S_n$, $\sigma(\Delta_n) = \pm \Delta_n$.

DEFINITION

Suppose $\sigma \in S_n$. We define the following.

- $\bullet (\sigma) = \sigma(\Delta_n)/\Delta_n \in \{\pm 1\}.$
- $2 \epsilon(\sigma)$ is called the sign of σ .
- **3** σ is called an <u>even</u> permutation if $\epsilon(\sigma) = 1$ and an <u>odd</u> permutation if $\epsilon(\sigma) = -1$.

Proposition

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism.

Proposition

Transpositions are all odd permutations and ϵ is a surjective homomorphism.

DEFINITION

The Alternating Group is defined as $A_n = \ker(\epsilon)$. That is, the Alternating group is the set of even permutations.

Note

Note that $S_n/A_n\cong\{\pm 1\}$. Thus $|A_n|=|S_n|/2=\frac{n!}{2}$.

FACT

 A_n is a non-Abelian simple group for all $n \geq 5$.